
AMD Prefetch Attacks through Power and Time

Moritz Lipp
Graz University of Technology

Daniel Gruss
Graz University of Technology

Michael Schwarz
CISPA Helmholtz Center for Information Security

Abstract
Modern operating systems fundamentally rely on the strict
isolation of user applications from the kernel. This isolation
is enforced by the hardware. On Intel CPUs, this isolation has
been shown to be imperfect, for instance, with the prefetch
side-channel. With Meltdown, it was even completely circum-
vented. Both the prefetch side channel and Meltdown have
been mitigated with the same software patch on Intel. As
AMD is believed to be not vulnerable to these attacks, this
software patch is not active by default on AMD CPUs.

In this paper, we show that the isolation on AMD CPUs suf-
fers from the same type of side-channel leakage. We discover
timing and power variations of the prefetch instruction that
can be observed from unprivileged user space. In contrast to
previous work on prefetch attacks on Intel, we show that the
prefetch instruction on AMD leaks even more information.
We demonstrate the significance of this side channel with
multiple case studies in real-world scenarios. We demonstrate
the first microarchitectural break of (fine-grained) KASLR
on AMD CPUs. We monitor kernel activity, e.g., if audio is
played over Bluetooth, and establish a covert channel. Finally,
we even leak kernel memory with 52.85 B/s with simple
Spectre gadgets in the Linux kernel. We show that stronger
page table isolation should be activated on AMD CPUs by
default to mitigate our presented attacks successfully.

1 Introduction

Many performance optimizations in modern CPUs rely on
predicting the control and data flow of applications. Thus,
a CPU contains many microarchitectural elements for pre-
diction, such as branch predictors or hardware prefetchers.
Still, it can help if a developer or compiler provides the CPU
with additional hints on data that will likely be accessed or
modified next, e.g., the family of prefetch instructions on
x86. The CPU can either ignore the hint or load the requested
virtual address and potentially subsequent addresses into the
cache level specified by the used prefetch instruction.

The prefetch instructions have the interesting property that
they cannot cause an exception. When providing an invalid

virtual address, the instruction is simply ignored. This is true
for virtual addresses that are not backed by physical addresses,
non-canonical addresses, and inaccessible addresses, such as
kernel addresses. Hence, this instruction can be used without
sanity checks, e.g., to prefetch the next pointer of a linked list,
even if the next pointer is not valid [2–4].

The prefetch instructions have been investigated on Intel
CPUs for side-channel leakage. Gruss et al. [25] showed that
the prefetch instructions leak information about the paging
hierarchy of a virtual address, i.e., on which page table level
a page table walk is aborted. As a mitigation against prefetch
side channels, Gruss et al. [24] suggested stronger kernel isola-
tion, which was adopted against Meltdown [42] and is widely
deployed on systems with Intel CPUs [18]. Canella et al. [12]
showed that this attack can also be mitigated by mapping
all pages in the kernel with dummy pages, ensuring that
the page table walk always ends at the same level. Further,
Gruss et al. [25] showed that in rare cases, the prefetch instruc-
tions are not ignored for inaccessible addresses, leading to the
caching of kernel data. However, Schwarzl et al. [60] showed
that this was wrongly attributed to the prefetch instructions
and is mitigated by the existing Spectre mitigations [6, 31].

In this paper, we show that there is indeed side-channel
leakage caused by the prefetch instructions on AMD. We
observe that the timing of the prefetch instructions on kernel
addresses depends on which page table level the page table
walk aborts, similarly to the effect on Intel but with an in-
verse timing distribution. Beyond the leakage described by
Gruss et al. [25], we can also infer the TLB state of these
addresses from the timing. Based on the TLB state, we can
mount microarchitectural attacks that previously were only
possible on Intel CPUs, such as the attacks demonstrated by
Gras et al. [22] with TLBleed, Schwarz et al. [54] with Store-
to-Leak forwarding, and Canella et al. [11] with Fallout.

Specifically, we show the first full microarchitectural
KASLR (kernel address space layout randomization) break on
AMD that works on all major operating systems. We demon-
strate the KASLR break on laptops, desktop PCs, and from
within virtual machines on the Amazon EC2 cloud. Further-
more, we demonstrate the first break of fine-grained KASLR



(FGKASLR) active on the Linux kernel. With a runtime of
0.15 s and a reliability of 100 %, this KASLR break is on par
with state-of-the-art microarchitectural KASLR breaks for
Intel CPUs [12, 25, 29, 35, 54]. Additionally, we demonstrate
that the side-channel leakage of the prefetch instructions al-
lows spying on kernel activity. As the timing of the prefetch
instructions does not only rely on the page-table level but
additionally on the TLB state, our attack leaks whether the
kernel currently uses a targeted kernel page. Using Spectre
gadgets, we show that this side channel can leak data from
the kernel with up to 58.98 B/s without shared memory and
active supervisor mode access prevention (SMAP). Thus, this
prefetch leakage is an alternative covert channel to mount
Spectre attacks [38] without relying on the cache.

Furthermore, we show that the side-channel leakage is not
limited to timing differences but can also be exploited through
power consumption. Since the Zen (family 17H) microarchi-
tecture, AMD CPUs provide a Running Average Power Limit
(RAPL) interface [7]. The recently released Linux 5.8 kernel
includes the amd_energy driver [14] providing unprivileged
access to per-core energy measurements. Consequently, with
this kernel version, AMD CPUs are vulnerable to power side-
channel attacks from user space as an alternative to timing-
based attacks.

Thus, this paper shows that AMD CPUs are not immune
to attacks on the isolation boundary between user and ker-
nel space. Hence, stronger kernel isolation [24] is not only
useful for Meltdown-affected Intel CPUs but also for AMD
CPUs, as it protects against a range of attacks with acceptable
overhead [23].

Contributions. The main contributions of this work are:
1. We analyze the side-channel leakage of prefetch instruc-

tions on AMD CPUs.
2. We present the first full microarchitectural KASLR break,

including fine-grained KASLR, on AMD CPUs.
3. We show that we can not only spy on kernel activity but

also leak kernel memory using a Spectre-type attack.
4. We demonstrate the first software-based power side-

channel attack on AMD CPUs.
5. We evaluate the effectiveness of existing countermeasures

against these attacks.

Responsible Disclosure We responsibly disclosed parts of
our findings to AMD on June 16th, 2020, and the remain-
ing parts on November 24th, 2020. AMD acknowledged our
findings and provided feedback on February 16th, 2021.

Outline. The paper is organized as follows. In Section 2, we
provide the necessary background. In Section 3, we analyze
the side channel and present the exploitation primitives. Sec-
tion 4 presents case studies to demonstrate the leakage in
real-world scenarios. Section 5 discusses countermeasures
preventing exploitation. In Section 6, we discuss implications
of our attacks and related work. We conclude in Section 7.

2 Background

In this section, we provide background on virtual memory,
prefetching, address space layout randomization, and RAPL.

2.1 Virtual Memory

To achieve memory isolation, modern processors support vir-
tual memory as an abstraction layer to the system’s physical
memory. For this purpose, the memory is organized in so-
called pages. For each process, the operating system maps
virtual pages to physical pages, creating a virtual address
space. By using multi-level page translation tables, the pro-
cessor resolves virtual addresses to physical addresses. The
root of the translation tables of a process is in a dedicated pro-
cessor register, e.g., the CR3 register on x86-64 architectures.
On a context switch, the operating system switches to the
address space of the next process by updating this register. In
addition to the physical address, translation tables also store
page properties, e.g., whether it can be accessed, written to,
executed, or accessed from user space.

On modern Intel and AMD processors, these translation
tables have 4 levels. However, with Intel’s recent Ice Lake
microarchitecture, support for 5-level paging has been intro-
duced. Each paging structure is 4 kB in size and comprises
512 entries of each 8 B. Thus, with 4 levels, bits 0 to 47 of the
virtual address are used; with 5 levels, bits 0 to 56 are used
to index the different page table levels. With 5-level paging,
the top-most level is the page map level 5 (PML5). It divides
the 57-bit address space into 512 entries. Each PML5E entry
maps to a page map level 4 (PML4). With 4-level paging, the
PML4 is the top-most level. The PML4 contains 512 entries,
each mapping to a page directory pointer table (PDPT). Each
PDPT entry defines a 1 GB region of physical memory (a
1 GB page) or maps to a page directory (PD). Each PD entry
either maps a 2 MB region of physical memory (a 2 MB page)
or maps to a page table (PT). Each PT entry then maps a 4 kB
page of physical memory.

Translation-Lookaside Buffer (TLB). The CPU resolves
virtual addresses to physical addresses by walking the page
tables, which are stored in physical memory. To speed up
the translation, the processor uses special caches called
translation-lookaside buffers (TLB) to cache page-table en-
tries. The TLB is then queried for the entry of a virtual address,
and only if the translation has not been cached before, the
CPU is required to walk the page-table entries.

AMD Zen CPUs have a dedicated multi-level TLB for the
instruction and data cache [4]. While the L1 TLB can store
entries for all page sizes, the L2 TLB can store entries for
4 kB and 2 MB pages, and additionally, page-directory entries
(PDEs) for faster page walks [4]. In contrast to AMD, Intel
has a shared L2 TLB [32].



On Intel processors, in addition to TLBs, so-called page-
translation caches (or paging-structure caches) [33] are used
to buffer the translated linear addresses and property bits of
the paging tables. On a TLB lookup, the paging-structure
caches are queried to speed up the translation process. Van
Schaik et al. [63] reverse-engineered the internal architecture,
size, and behavior of these caches.

2.2 Prefetch
To speed up access to frequently used memory locations, the
CPU uses multiple levels of caches to store data and instruc-
tions. Furthermore, CPUs use different hardware prefetchers
that preload instructions and data into the cache based on the
behavior of the running program. For instance, the adjacent
cache-line prefetcher caches data that is adjacent to the data
currently being loaded [28]. Developers and compilers can
also use instructions to hint the CPU to prefetch specific ad-
dresses to a cache specified by a locality hint [3, §3.9.6.1].
With prefetcht0, data should be prefetched to all cache lev-
els while prefetcht1 should prefetch into level 2 and higher,
and prefetcht2 should prefetch to level 3 cache and higher.
A non-temporal prefetch hint (prefetchnta) should prefetch
data into a non-temporal cache structure close to the CPU.
On AMD CPUs, such cache lines are marked for quick evic-
tion [4] as they are likely used only once.

Software prefetches are an important way to improve the
performance of an application and are sometimes automat-
ically inserted by the compiler, e.g., for loops. It must be
noted that prefetch instructions can, by definition, not raise
any exception (besides an undefined instruction exception if
the LOCK prefix is used). Hence, even when executed with in-
valid virtual addresses as an argument, e.g., non-present, non-
canonical, and inaccessible addresses like kernel addresses,
prefetch instructions do not raise an exception. Thus, it can
be safely used within a loop iteration even if the next address
used is invalid, e.g., a null pointer. Gruss et al. [25] showed
that prefetch instructions leak information on Intel CPUs
about the paging hierarchy, i.e., on which page-table level
a page-table walk is aborted. Their further observation that
inaccessible virtual addresses are prefetched into the cache
has been invalidated by Schwarzl et al. [60] and shown that
the actual cause is speculative execution in the kernel.

2.3 Address-Space Layout Randomization
Address-space layout randomization (ASLR) is a lightweight
defense against memory corruption bugs. Kernel ASLR
(KASLR) applies ASLR in the kernel, randomizing the loca-
tions of kernel code, data, and drivers on every boot, to impede
exploitation of kernel bugs. However, various side-channel
attacks have been demonstrated in the past that either reduce
the entropy of KASLR or break it entirely. Hund et al. [29]
presented the double page-fault attack, measuring the execu-

tion time of the kernel page-fault handler. If a kernel address
is accessed, the translation entries are copied into the TLB,
although the kernel address is user inaccessible. The attacker
measures the execution time of a second page fault to the
same address, which is faster if the memory location is valid
as the translation is cached in the TLB. Jang et al. [35] ex-
ploited the same effect by utilizing Intel TSX transactions. If
a page fault occurs within a transaction, it is aborted without
any operating system interaction. This allows an attacker to
learn which kernel memory locations are valid.

Gruss et al. [25] exploit the software prefetch instruction
that leaks information on the paging hierarchy of a virtual
address. By observing the instruction’s execution time, the
attacker learns not only whether an inaccessible address is
valid but also the corresponding page size.

Lipp et al. [40] exploited AMD’s L1D cache way predic-
tor to reduce the entropy of KASLR of the Linux kernel.
Canella et al. [12] exploited the behavior of hardware mitiga-
tions against Meltdown [42] to break KASLR. Koschel et al.
[39] exploited tagged TLBs to break KASLR even in the face
of state-of-the-art mitigations. Gras et al. [21] exploited that
page-table pages are stored in the last-level cache to break
code and heap ASLR from JavaScript.

2.4 RAPL
With the Sandy Bridge microarchitecture, Intel introduced
the Intel Running Average Power Limit (RAPL) mechanism
to ensure the processor remains within desired thermal and
power constraints [20]. To implement the software-level con-
trol logic to adjust the CPU frequency while ensuring the
power limits, it is necessary to provide feedback on the current
energy consumption to software. The hardware implementa-
tion here may use voltage regulator current monitoring [20]
or estimate the energy consumption in the core itself, e.g., in
Sandy Bridge and Ivy Bridge microarchitectures. Intel defines
different domains for RAPL, i.e., package, power planes, and
DRAM, and, thus, provides the energy consumption for the
entire CPU package. On Linux, the power capping framework
powercap exposes the Intel RAPL model-specific registers
(MSRs) to unprivileged user-space access via sysfs.

Since the Zen microarchitecture, AMD also provides an
interface that is partially compatible with Intel RAPL [7].
In contrast, AMD’s implementation provides per-core coun-
ters. With Linux kernel 5.8, this interface also gives access
to unprivileged user-space applications via the procfs inter-
face [14]. However, a more recent patch limits the availability
of the interface to Rome CPUs as other microarchitectures
apparently report unreliable measurements [49].

3 AMD Prefetch Side Channel

In this section, we show how the prefetch instructions on
AMD leak side-channel information via timing and power



Table 1: CPU type, model, and microarchitecture for each
AMD device under test.

Type CPU Microcode µ-arch

Mobile Ryzen 5 2500U 0x810100b Zen
Desktop Ryzen Threadripper 1920X 0x8001137 Zen
Desktop Ryzen 5 3600 0x8701021 Zen 2
Desktop Ryzen 7 3700X 0x8701021 Zen 2
Desktop A10-7870K 0x6003106 Steamroller
Cloud EPYC 7402P 0x830104d Zen
Cloud EPYC 7571 0x800126c Zen

consumption and compare the leakage to known leakage on
Intel CPUs. We present the three exploitation techniques,
Prefetch+Time, Prefetch+Power, and TLB-Evict+Prefetch
that we use in our case studies (cf. Section 4). All our code
can be found in a GitHub repository.1

Experimental Setup. Throughout this work, we ran our
experiments for the leakage analysis and the presented case
studies (Section 4) on AMD mobile, desktop, and server CPUs
(Table 1). In the mobile setting, we used a Ryzen 5 2500U
CPU, in the server setting, an EPYC 7402P CPU and an
AMD EPYC 7571 running on the Amazon AWS cloud, and
for the desktop setting, we used a Ryzen Threadripper 1920X,
a Ryzen 5 3600, a Ryzen 7 3700X, as well as an A10-7870K
CPU. All tested devices run a recent Ubuntu, CentOS, or
ArchLinux operating system using the default configuration
with Linux kernels ranging from 3.10 to 5.9. We also used an
Intel Core i7-8565U to compare measurements to Intel CPUs.

3.1 Leakage Analysis Primitives
To analyze the leakage of the prefetch instruction regarding
power and time, we require high-resolution timers, perfor-
mance counters, and the RAPL interface. In this section, we
describe the used primitives for the analysis.

Timing. Since the Zen microarchitecture, AMD CPUs have
reduced the update interval of the timestamp counter [40].
While it still provides timings in cycle resolution, the update
interval is reduced to 20-40 cycles, depending on the specific
CPU [40]. Especially with Zen 2, we only measured an update
interval of 36 cycles for AMD Ryzen 7 3700X and AMD
Ryzen 5 3600. While this is sufficient for cache attacks [34,
38, 40], it requires more repetition of the measurements to
exploit the small timing differences of the prefetch instruction.

Hence, if available, we rely on rdpru, a previously unex-
plored CPU instruction introduced with the Zen 2 microarchi-
tecture [3]. This instruction allows reading the APERF and
MPERF MSRs from user space. The MPERF MSR is incre-
mented by the CPU with the P0 frequency, and the APERF

1https://github.com/amdprefetch/amd-prefetch-attacks

MSR is incremented by the actual clock cycles [5]. While the
rdpru instruction can be disabled for unprivileged users by
setting CR4.TSD [3, §3.2.5], it was enabled on all our tested
systems running Ubuntu 20.04 .

To compare the rdpru instruction to rdtsc(p), we evalu-
ated the update frequency, reordering behavior, and register
dependencies. We evaluated the update frequency of rdtsc
and rdpru (APERF and MPERF) on an AMD Ryzen 5 3600
using the technique described by Lipp et al. [40]. The up-
date interval for rdtsc is 36 cycles, the same as the interval
for MPERF read using rdpru. However, when reading APERF
using rdpru, we measure an update interval of 1 cycle. We
also verified that these fast updates are reliable by measuring
a linearly increasing number of nops. While the execution
time measured with rdtsc and rdtscp was always a multiple
of 36, we measured cycle-accurate values with rdpru. Only
rdtscp is documented to force the retirement of older in-
structions [3], measuring time with rdtsc requires additional
serializing instructions. We analyzed the retirement behavior
of rdpru by adding it behind the mispredicted branch in a
Spectre-PHT attack. In case the instruction is serializing, such
as a memory fence, the leakage is mitigated [6]. For rdtsc
and rdpru, the leakage is not mitigated, while for rdtscp, the
leakage is mitigated. From this, we infer that rdpru has the
same reordering behavior as rdtsc. Finally, the register de-
pendencies are the same as for rdtscp, rdpru modifies RAX,
RDX, and RCX. Hence, on Zen 2, we can use rdpru as a drop-in
replacement for rdtsc and also for rdtscp if we add addi-
tional fences. Using rdpru results in a high-resolution timer
with an even higher resolution than the rdtsc instruction on
Intel CPUs. Therefore, we use rdpru in all our experiments
and case studies if available.

Power. Intel CPUs provide the Running Average Power
Limit (RAPL) interface to provide power-management infor-
mation to software. Previous work used this interface to distin-
guish cryptographic keys [44]. Since AMD Family 17h, if bit
14 of CPUID 0x80000007 EDX is set, AMD provides an in-
terface that is partially compatible with Intel RAPL. The inter-
face provides power consumption values for the core domain
and package domains via the MSRs CORE_ENERGY_STAT and
PKG_ENERGY_STAT respectively [5]. Since Linux kernel 5.8,
this interface is available to unprivileged user-space appli-
cations via the sysfs interface. An advantage of AMD’s
implementation compared to Intel’s implementation is that
information is available per core, not only per package. Hence,
this allows measurements with less noise. Linux also provides
an additional interface for power measurement on AMD. With
the Linux kernel 5.6, the k10temp driver shows the currents
and voltages of the CPU core and SoC of Ryzen CPUs and
exposes them via the hwmon interface to unprivileged users.

However, we only use the RAPL interface for our work
and evaluated it regarding its resolution. For the RAPL-
compatible interface accessible via the sysfs interface, we



40 60 80 100 120
0

2,000
4,000
6,000
8,000

Energy [pJ]

N
um

be
r

of
ca

se
s clflush

xor

cached load

rdtsc

Figure 1: The energy consumption over 1 s of four different
types of instructions measured using the RAPL interface.

measure an update interval of 1002.618 µs (σ = 0.146,n =

5000). This is close to the update interval stated by the CPU
in the RAPL_PWR_UNIT MSR, which is 976 µs. The reported
power consumption is in microjoule, with a resolution of
15.3 µJ as reported by the RAPL_PWR_UNIT MSR. The resolu-
tion and update interval is not sufficient to distinguish single
events, e.g., the type of instruction or whether a memory load
is served from the cache or DRAM. However, when events are
repeatable, the resolution and update interval is sufficient to
measure such differences. As an example, Figure 1 shows the
histograms of the power consumption for repeatedly executing
various instructions for 1 s (the exact instruction sequences
can be found in Appendix C).

Performance Counters. To analyze the root cause of the
leakage, we rely on performance counters. As performance
counters are typically only available to privileged users, we
do not rely on performance counters for exploiting the leakage
but only for analyzing the leakage. We mainly rely on perfor-
mance counters directly related to prefetching, TLB events,
as well as µop dispatching. Table 4 (Appendix A) contains an
overview of the used counters.

For comparing the microarchitectural effects with similar
effects on the Intel microarchitecture, we also rely on the
equivalent performance counters on Intel.

3.2 Prefetch Leakage

Based on our analysis primitives, we investigate the infor-
mation leakage of software prefetch instructions. We dis-
cover 2 different properties (P1, P2) that leak through the
prefetch instruction. An unprivileged attacker from user
space can measure these properties. While there are 4
different prefetch instructions (prefetcht0, prefetcht1,
prefetcht2, prefetchnta), they only differ in the targeted
cache level, which is not relevant for our attacks. Further-
more, AMD documents that prefetcht0, prefetcht1, and
prefetcht2 are implemented exactly the same and do not
differ [2]. Hence, for the remainder of the paper, we do not
further distinguish the different instructions. To ensure noise-
free measurements for the analysis, we isolate the cores on
which we measure using the isolcpus command-line op-
tion and fix the CPU frequency using the cpupower utility.

Page PTE PD PDPT

250
260
270

275±0.02 272±0.01

259±0.01

246±0.01

E
xe

cu
tio

n
tim

e
[c

yc
le

s]

Figure 2: Execution time in cycles of prefetch including the
measurement standard error (± cycles) on an AMD Ryzen 5
2500U for different number of page-table levels mapped.

Page PTE PD PDPT
90

95

100

90±0.02

98±0.01
100±0.03 100±0.01

E
xe

cu
tio

n
tim

e
[c

yc
le

s]

Figure 3: Execution time in cycles of prefetch including
the measurement standard error (± cycles) on an Intel Core
i7-8565U for different number of page-table levels mapped.

All measurements are repeated multiple times to average out
possible outliers.

3.2.1 P1: Page-Table Level

The first property is the information about the level on which
the page-table walk stops. While it has been shown that this
property can be leaked from prefetch instruction on Intel
CPUs [25], it has not been analyzed on AMD CPUs. Surpris-
ingly, although the prefetch instruction does leak information
about the page-table level on AMD CPUs, the behavior is
inverse to that on Intel CPUs.

We measure the execution time of the prefetch instruction
for 4 different virtual addresses. These addresses are chosen
such that the page-table walk ends at different page-table
levels. For every address, we measure how long the fenced
execution of one prefetch instruction to this address takes. To
average out noise, we calculate the average execution timer
over 10 million measurements. Intuitively, the fewer page
tables are mapped for an address, the earlier the page-table
walk aborts. Figure 2 shows the execution time in cycles,
including the standard error, of the prefetch instruction for
these virtual addresses. On AMD, the execution time of the
prefetch instruction is proportional to the number of mapped
page-table levels for the virtual address. On Intel, however,
the execution time is inversely proportional to the number of
mapped page-table levels, as observed by Gruss et al. [25].
We can confirm this, as shown in Figure 3.

The page-table level leakage is measurable both for accessi-
ble addresses, i.e., addresses within the user address space of
the application, and for inaccessible addresses, i.e., kernel ad-



Table 2: The number of data TLB (dTLB) misses for 1000
prefetches of an inaccessible virtual address.

dTLB misses / 1000 prefetches

Intel 1000 (dtlb_load_misses.miss_causes_a_walk)
AMD Zen 2000 (ls_l1_d_tlb_miss.all)
AMD Zen 2 1 (ls_l1_d_tlb_miss.all)

dresses mapped into the application. However, the leakage for
inaccessible addresses is more interesting. If not mentioned
otherwise, we always exploit the leakage for inaccessible ad-
dresses in the remainder of the paper.

To prefetch an address into the cache, the CPU requires
the physical address of the target. The physical address can
either be retrieved from the TLB if it is cached there, or the
translation requires a page-table walk. As the permission, i.e.,
whether a virtual address is user-accessible, is stored in the
page-table entry (or TLB), a prefetch has to trigger a page-
table walk if the address is not in the TLB.

From the timings (cf. Figure 2), we see how many page-
table levels the page-table walker has to translate. Up to the
page directory, the timing increases linearly with every page-
table level. From the performance counters (cf. Table 2, we
see that AMD Zen seems to trigger 2 page-table walks for
an inaccessible address, whereas Intel only triggers a single
page-table walk. Hence, the timing difference is amplified
by the repeated page-table walks. We assume that this is
an implementation flaw, as this is not the case anymore on
the Zen 2 microarchitecture. On Zen 2, there is only one
TLB miss on the first access, as Zen 2 also stores invalid
translations in the TLB.

On Intel processors, the lookup direction for the TLB and
page translation caches is from logically lower levels (i.e.,
PTEs) to logically higher levels (i.e., PML4Es). The timings
indicate that on Intel, only the lowest missing level is fetched
from memory, whereas all others are served from the page
translation caches [8, 25, 33, 63].

3.2.2 P2: TLB State

In addition to the page-table level, the prefetch instructions
also leak the TLB state, i.e., whether an address is currently
cached in the TLB or not. As shown in Table 3, the software
prefetch has a higher execution time if the address is not
cached in the TLB. This property of the prefetch instructions
is neither officially documented, nor was it measured on Intel
CPU by Gruss et al. [25]. With the TLB state, it is possible to
mount TLB attacks that have only been shown on Intel CPUs
so far [22, 29, 35, 54].

We evaluate the influence on the TLB state for a virtual
address cached in the TLB and for the same virtual ad-
dress flushed from the TLB. We evaluate this leakage on an
AMD Ryzen 5 2500U (Ubuntu 20.04 LTS, kernel 5.4.0-42).

Prefetching an inaccessible virtual address that is cached in
the TLB takes on average 125 cycles (n = 1 000 000). When
invalidating the TLB before prefetching the address, the aver-
age time increases to 156 cycles (n = 1 000 000).

To further investigate the influence of memory types or
properties of the page table entries, e.g., whether the page
can be accessed from user space, we conducted the following
experiment. As illustrated in Table 3, we set up pages with dif-
ferent permission bits set (executable, present, user-space ac-
cessible, dirty, global, accessed) and alternative memory types
(write-back, write-combining, write-through, write-protected,
uncacheable, uncacheable minus). For each microarchitecture,
we measured the execution time of the prefetch instruction on
the prepared page in two scenarios. First, we flushed the TLB
entry using dedicated privileged functionality in the Linux
kernel, measuring a TLB miss. Second, we leave the targeted
page cached in the TLB to measure a TLB-hit by using the
prefetch instruction in the kernel. To overcome measurement
noise, we repeated the measurement 10 000 times.

We can observe timing differences between TLB hits and
misses on all microarchitectures. We want to note that on
the Zen microarchitecture, the access times differ manifold
depending on the set properties. On the Intel microarchitec-
ture, it is possible to differentiate between inaccessible pages
that are present and not present. Furthermore, on the Zen 2
microarchitecture, almost all measurements that should hit
the TLB yield the same execution time. We conclude that Zen
2 caches the translations regardless of the permission bits.

We observed that on AMD, the prefetch instruction sets the
accessed bit in the page table entry. Thus, on a subsequent
access or prefetch, the translation is served from the TLB.
However, Intel CPUs do not seem to modify the accessed bits
using a prefetch instruction, and, hence, the translation will
not be cached in the TLB. Intel caches only translations if the
accessed bits are set in all paging-structure entries [30].

An exception marks the not-accessed page (199 cycles)
and the not-accessed kernel page with a higher timing on Zen
2 (220 cycles). In the case of pages where we unset the access
bit, we omit the prefetch instruction in the kernel to avoid
re-setting the accessed bit. We assume that the page-table
walk caused by the prefetch instruction might require a mi-
crocode assist to set the accessed bit in the page table entry,
as is the case on Intel CPUs [59]. The inaccessible address
later causes a memory fault, treating the instruction itself as
a no-operation (NOP) [47]. However, the microcode assist
has already been dispatched. While AMD does not provide a
dedicated performance counter for microcode assists like In-
tel (other_assists.any), we observed exactly 2 page table
walks on the data side (ls_tablewalker.dside).

Furthermore, we observe a higher timing for page table
entries marked as uncachable or write-combining. While
this case is not documented for AMD, Intel describes that
prefetches to such memory locations are ignored [32]. Since
the prefetch instruction serves as a hint to the processor to



Table 3: Average prefetch execution time in cycles for pages with different properties on different microarchitectures (cf. Table 1).
For the TLB-hit case in this table, addresses are accessed via a kernel module to ensure that their translation is cached in the TLB.
As Zen 2 caches everything in the TLB, leakage is not visible in this table (cf. Table 2). On AMD, pages need to be accessed
to be in the TLB. Hence, TLB hits cannot be measured for non-accessed pages (N/A). NX = non-executable, P = present, U =
uncachable, D = dirty, G = global, A = accessed.

Permission Bits Memory Type Zen (Ryzen 5 2500U) Zen 2 (Ryzen 5 3600) Intel (i7-8565U)
NX P U D G A TLB-Hit TLB-Miss TLB-Hit TLB-Miss TLB-Hit TLB_Miss

Write-Back 75 (σx̄ = 0.03) 112 (σx̄ = 0.03) 87 (σx̄ = 0.00) 148 (σx̄ = 0.00) 90 (σx̄ = 0.01) 119 (σx̄ = 0.03)
Write-Back 125 (σx̄ = 0.03) 156 (σx̄ = 0.03) 87 (σx̄ = 0.00) 148 (σx̄ = 0.00) 90 (σx̄ = 0.04) 119 (σx̄ = 0.01)
Write-Back 149 (σx̄ = 0.04) 149 (σx̄ = 0.04) 87 (σx̄ = 0.00) 148 (σx̄ = 0.00) 119 (σx̄ = 0.03) 119 (σx̄ = 0.04)
Write-Back 149 (σx̄ = 0.04) 149 (σx̄ = 0.04) 87 (σx̄ = 0.00) 148 (σx̄ = 0.00) 119 (σx̄ = 0.04) 119 (σx̄ = 0.03)
Write-Back 125 (σx̄ = 0.03) 156 (σx̄ = 0.03) 87 (σx̄ = 0.00) 148 (σx̄ = 0.00) 90 (σx̄ = 0.01) 119 (σx̄ = 0.04)
Write-Back 125 (σx̄ = 0.03) 156 (σx̄ = 0.03) 87 (σx̄ = 0.00) 148 (σx̄ = 0.00) 90 (σx̄ = 0.01) 119 (σx̄ = 0.02)
Write-Back 75 (σx̄ = 0.03) 113 (σx̄ = 0.03) 87 (σx̄ = 0.00) 148 (σx̄ = 0.00) 90 (σx̄ = 0.01) 119 (σx̄ = 0.03)
Write-Back N/A 142 (σx̄ = 0.06) N/A 199 (σx̄ = 0.00) 119 (σx̄ = 0.03) 119 (σx̄ = 0.03)
Write-Back N/A 155 (σx̄ = 0.09) N/A 220 (σx̄ = 0.00) 119 (σx̄ = 0.03) 119 (σx̄ = 0.05)
Write-Back N/A 156 (σx̄ = 0.16) N/A 148 (σx̄ = 0.00) 119 (σx̄ = 0.03) 119 (σx̄ = 0.05)
Write-Combining 83 (σx̄ = 0.06) 113 (σx̄ = 0.03) 87 (σx̄ = 0.00) 148 (σx̄ = 0.00) 90 (σx̄ = 0.04) 119 (σx̄ = 0.03)
Write-Through 75 (σx̄ = 0.04) 113 (σx̄ = 0.03) 87 (σx̄ = 0.00) 148 (σx̄ = 0.00) 90 (σx̄ = 0.04) 119 (σx̄ = 0.02)
Write-Protected 75 (σx̄ = 0.04) 113 (σx̄ = 0.05) 87 (σx̄ = 0.00) 148 (σx̄ = 0.00) 90 (σx̄ = 0.01) 119 (σx̄ = 0.04)
Uncacheable 83 (σx̄ = 0.02) 113 (σx̄ = 0.03) 87 (σx̄ = 0.00) 148 (σx̄ = 0.01) 90 (σx̄ = 0.02) 119 (σx̄ = 0.02)
Uncacheable Minus 86 (σx̄ = 0.02) 113 (σx̄ = 0.06) 87 (σx̄ = 0.00) 148 (σx̄ = 0.01) 90 (σx̄ = 0.01) 119 (σx̄ = 0.03)

load data closer to the executing core, speculatively accessing
data, for example, from I/O devices, would break the function-
ality. We also experimentally confirmed that transient loads,
which are similar to the prefetch instruction [2], cannot access
uncached memory, as was also shown on Intel CPUs [57]. In
contrast to the previous experiment, we did not observe an
increased number of retired micro-operations or additional
page table walks.

3.3 Difference to Normal Memory Loads
Software-prefetch instructions are a special kind of memory
load. In contrast to all other operations that load data from
memory, the prefetch instruction does not trigger any excep-
tion when specifying an invalid or inaccessible address. This
behavior is documented explicitly by AMD: “If the operand
specifies an invalid memory address, no exception occurs, and
the instruction has no effect.” [3, §3.9.6.1].

In addition to this well-documented difference, we also
experimentally observe other differences.

Retirement. We observe that in contrast to regular data
loads, loads triggered by the software-prefetch instructions
never stall. Our experiments indicate that prefetch loads are
immediately and ready-to-retire in the re-order buffer. Reg-
ular loads are only marked as complete and ready-to-retire
when the target data is actually returned. On Intel CPUs, it
is documented that prefetch instructions do not stall the nor-
mal instruction retirement [32] and retire after the address
translation is completed [32].

We verified the stalling behavior by measuring the impact
of fences on load instructions. AMD documents the load fence
as “All memory loads preceding the LFENCE (in program
order) are completed prior to completing memory loads fol-
lowing the LFENCE.” [3, §3.9.2]. Hence, the lfence ensures

that any load not marked as completed has to be completed
first. In contrast, the cpuid instruction is fully serializing.

In our experimental setup on an AMD Ryzen 5 3600 (Arch-
Linux, kernel 5.10.39), we first load from an uncached mem-
ory location either via a regular load or a software-prefetch
instruction. We then either add an lfence or a cpuid in-
struction as the subsequent instruction. We measure the exe-
cution time of this code snippet 1 000 000 times and ensure
that no reordering of the measured instructions occurs by
using memory fences (see Figure 12). For the regular load
instruction, we observe that with a fully-serializing cpuid,
we measure an average execution time of 945.71 cycles. For
the prefetch instruction, we measure 842.96 cycles. However,
when using an lfence instead of cpuid, we measure 814.44
cycles for the memory load but only 158.58 cycles for the
prefetch instruction. Hence, we conclude that loads triggered
by software-prefetch instructions are immediately marked as
complete after the address translation and do not stall. In Ap-
pendix B, we evaluate an additional experiment measuring
the execution time of many memory loads and respectively
prefetch instructions that supports this statement. This also
confirms the description by AMD that “[...] a load instruction
may cause a subsequent instruction to stall until the load
completes, but a prefetch instruction will never cause such a
stall.” [3, §3.9.6.1].

Page-Table Walk. For valid, user-accessible data, both reg-
ular loads and prefetches can trigger a page-table walk in
case the virtual address is not cached in the TLB. However,
for prefetches, the TLB is only populated if the page-table
walk does not cause a fault. This is not the case for the Zen
2 microarchitecture, and even invalid translations are cached.
For inaccessible pages, i.e., pages where the user-accessible
bit is cleared, the fault also causes the prefetch instruction to



be re-issued, which is not the case for regular loads. Table 2
shows the number of data TLB misses when prefetching such
an inaccessible address.

3.4 Exploitation
In this section, we define two exploitation techniques based
on the leakage analysis primitives described in Section 3.1
and the properties that leak through the prefetch instruction,
as shown in Section 3.2.

3.4.1 Prefetch+Time

Prefetch+Time directly exploits the execution time of the
software prefetch instruction. This primitive is similar to
the prefetch attacks known on Intel CPUs [25]. With
Prefetch+Time, it is possible to directly leak the page-table
level (P1), as we show in the KASLR case study in Sec-
tion 4.1. On the Zen architecture, it is furthermore possible to
infer the TLB state (P2) with this primitive.

The execution time of the prefetch instruction depends on
the page-table level (P1) at which the page-table walk stops
and the TLB state (P2) in case the page is present. However,
only the page-table level (P1) can be measured by timing a
single prefetch instruction. For the other effects, the resolution
of the high-resolution timer on AMD is in a similar range
as the measured timing differences. Measuring these effects
requires the measurement over multiple prefetch instructions.

In the case that prefetching the target does not change the
state of the target, e.g., prefetching a non-present address, it
is simply possible to measure the time it takes to execute n
prefetch instructions to the same page. Alternatively, if the
monitored address range spans multiple pages, Prefetch+Time
can measure the cumulative execution time of prefetching
each page, similar to Multi-Prime+Probe [58]. In other cases,
where the TLB state is updated on a prefetch, e.g., when
prefetching a kernel page on Zen 2, we have to resort to TLB-
Evict+Prefetch (cf. Section 3.4.3).

3.4.2 Prefetch+Power

An alternative to measuring the execution time of the software
prefetch instruction is to measure its power consumption via
software interfaces. For Prefetch+Power, we rely on the un-
privileged RAPL interface (cf. Section 3.1), which provides
high-resolution power consumption of CPU cores. As with
Prefetch+Time, with Prefetch+Power, it is possible to leak the
page-table level (P1), as we show in the KASLR case study
in Section 4.1. Prefetch+Power has the advantage that it does
not require any high-resolution timer.

As with the execution time, the power consumption of
the software prefetch instruction increases with the number
of page-table levels. With an update interval of only 976 µs
and a resolution of 15.3 µJ, the resolution of the RAPL inter-
face is not sufficient to reliably measure the TLB state (P2).

Moreover, as the power consumption cannot be measured
for a single instruction but for the entire core activity, the
measurement suffers from significant noise.Thus, similarly
to Prefetch+Time, using Prefetch+Power to measure P1also
requires the measurement of multiple prefetch instructions.
Again, this can only be applied if the state of the TLB does not
change when prefetching, and thus it is mostly applicable to
the Zen microarchitecture as Zen 2 caches invalid translations.

3.4.3 TLB-Evict+Prefetch

When leaking the TLB state (P2) on Zen 2, or moni-
toring page activity via the TLB, neither Prefetch+Time
nor Prefetch+Power are sufficient. In these cases, TLB-
Evict+Prefetch can reliably leak the TLB state. As Zen 2
stores valid and invalid virtual to physical translations in the
TLB, the measured timing or power differences are only mea-
surable for the first prefetch. However, as the resolution of
both primitives is insufficient to measure a single prefetch
instruction, TLB-Evict+Prefetch has to first evict the corre-
sponding TLB entry before issuing the prefetch instruction.

For the TLB eviction, we rely on existing eviction strate-
gies [22, 63] for the best possible eviction rate. With this
combination of TLB eviction and prefetching, we can reliably
leak the page-translation level for inaccessible pages (P1) on
Zen 2, as well as the TLB state (P2) on both Zen and Zen 2.

3.5 Covert Channel

In this section, we describe how TLB-Evict+Prefetch can be
used to establish a covert channel between two unprivileged
processes that either are not allowed to communicate over
traditional communication mechanisms, e.g., sockets, or want
to hide their communication.

The idea of the covert channel is to encode the information
by caching translations of kernel pages in the TLB. While a
context switch to a different address space requires addresses
from the TLB to be flushed, it is not necessary that the entire
TLB has to be flushed. As AMD is not vulnerable to the Melt-
down [42] attack, its software-based mitigation kernel page
table isolation (KPTI) [18] on Linux is not active. Therefore,
kernel pages are still marked with the global bit and, thus,
are not affected by the implicit TLB flush. Furthermore, if
active, only translations with the same process-context iden-
tifier (PCID) are flushed from the TLB. To transmit a 1-bit,
the unprivileged sender accesses an inaccessible kernel ad-
dress (previously fixed on by both, the sender and receiver)
using the prefetch instruction. While the actual data is not
loaded to the cache, the translation of the address is cached
in the TLB. To transmit a 0-bit, the sender idles. Using TLB-
Evict+Prefetch, the receiver monitors the same inaccessible
kernel address and decodes the transmitted bit by observing
the execution time of the translation. Multiple bits are sent in
parallel using multiple addresses.



0 500 1,000 1,500

1,560

1,580

1,600

Time [ms]

E
xe

cu
tio

n
Ti

m
e

Figure 4: Transmission of bits 101010111000 using the
prefetch covert channel. Gray areas highlight the transmission
of a 1-bit, the red line is the threshold used by the receiver.

Figure 4 illustrates the transmission of the bits
101010111000 over the covert channel. The receiver decodes
every bit in each time frame by detecting time measurements
under the threshold illustrated as the red line. In our unopti-
mized proof-of-concept implementation, we achieve a trans-
mission rate of 6.66 bit/s with no transmission errors when
using 20 addresses for the covert channel.

In contrast to other state-of-the-art covert channels [26, 43,
45], our covert channel has the limitation that it does not work
across cores, likewise to the covert channel utilizing AMD’s
L1D way predictor [40]. Since the instruction and data TLB
are not shared across hardware threads, a covert channel based
on the prefetch side channel can not be established.

4 Case Studies

In this section, we present 4 case studies to show how
software-prefetch instructions on AMD can be exploited.
First, we show that KASLR can be derandomized reliably
within seconds (Section 4.1) and that even the new fine-
grained KASLR (FGKASLR) of the Linux kernel can be bro-
ken (Section 4.2). Furthermore, we show that the TLB leakage
allows building direct attacks on the kernel. We demonstrate
that it is possible to detect activity in the kernel inferring user
activity (Section 4.3) or to leak kernel memory in combination
with Spectre (Section 4.4).

4.1 Kernel Address Space Derandomization

In this section, we show that an unprivileged attacker can
derandomize the kernel address space layout using RAPL. As
there is no distinction between committed and non-committed
instructions at the voltage regulator level, the power consump-
tion also changes for transient instructions. Transient instruc-
tions are instructions that have been executed by an out-of-
order processor but are never committed to the architectural
state, e.g., instructions causing a fault [42] or instructions
following a misspeculated branch [38]. The general concept
of derandomizing the kernel address space is to distinguish
between the transient access of mapped and unmapped kernel
addresses via differences in power consumption. While on In-
tel CPUs, transiently accessing mapped and unmapped kernel

0 32 64 96 128 160 192 224 256 288 320
0.8

1
1.2
1.4

⋅104

Kernel offset [MB]

E
ne

rg
y

[µ
J]

Figure 5: Power consumption when prefetching kernel ad-
dresses. The yellow rectangle shows the kernel location. The
first spike is the location of the __do_softirq function.

addresses shows differences in timing [25, 29, 35] and store-
forwarding behavior [11,54], this effect has not been observed
on AMD CPUs so far. However, in this section, we show that
on AMD CPUs, the same result can be achieved by measuring
the power consumption of transient kernel accesses.

Figure 5 shows the power consumption when prefetching a
kernel address using the prefetch instruction 100 000 times.
The yellow rectangle marks the location of the kernel. It can
be seen that the power consumption differs for several pages
that are mapped by the kernel. Specifically, we observed that
the first spike in the power consumption reliably appears at the
page used by the __do_softirq kernel function. By iterating
over the page tables of the Linux kernel, we verified that the
kernel page of __do_softirq function is the first 4 kB page
used within the kernel image. As shown in Section 3.2.1, the
execution time of the prefetch instruction is higher for a 4 kB
page than a 2 MB page. In addition, the translation level for
virtual addresses is also visible in the power consumption. In
Figure 5, the first increase in the power consumption at offset
‘0’ shows where the page directory for the kernel is mapped.
Before that offset, there is no valid page directory.

In our experiments, we successfully used an AMD EPYC
7402P, AMD EPYC 7571, AMD Ryzen 5 3600, and an AMD
Ryzen Threadripper. We also verified that the KASLR break
works in a virtualized environment by mounting it on a T3a
instance (AMD EPYC 7571) on the Amazon AWS cloud. As
the kernel is 2 MB aligned with a range of 1 GB, there are 512
possible randomization offsets [54]. For each of these offsets,
we measure the power consumption when prefetching the
address. The average time to find the KASLR offset is 0.15 s
which is similar to state-of-the-art KASLR breaks on Intel
CPUs. In contrast to previous microarchitectural KASLR
breaks [11, 12, 25, 29, 35, 54, 64], our KASLR break using
power consumption is the first microarchitectural KASLR
break that does not require any timing primitive.

As discussed in Section 3.2.2, Zen 2 seems to cache pages
regardless of their permission bits in the TLB. On the contrary,
Intel does not cache address translations for pages that are not
present [25]. Thus, measuring over multiple executions of the
prefetch instruction yields the same execution time on average
and, thus, does not allow derandomizing the kernel offset.
Thus, on Zen 2, instead of measuring the energy consumption



32 96 160 224 288 352 416 480
200
220
240
260
280

Kernel offset [MB]

E
xe

cu
tio

n
Ti

m
e

Figure 6: Execution time when prefetching kernel addresses.
The yellow rectangle shows the actual location of the kernel,
corresponding with the measured negatives spike.

over the prefetch instruction, we measure the execution time
of a single prefetch instruction repeatedly. Since the address
translation is cached, we invalidate it by evicting the TLB
between each measurement. Figure 6 shows the recorded
measurements over the possible offsets on an AMD Ryzen 7
3700X running a Linux kernel 5.4. The first negative spike
corresponds to the start of the kernel, i.e., startup_64 located
at 0xffff ffff a000 000. With the same technique, we
derandomized the kernel on the A10-7870K, running CentOS
7.8 with a Linux kernel 3.10.

4.2 Breaking Fine-Grained KASLR

In 2020, Intel proposed fine-grained KASLR (FGKASLR)
for the Linux kernel. We show that even with this advanced
randomization, it is possible to use the prefetch instruction
to find the address of a function of interest. At the time of
writing, this patch is not in the upstream kernel. However, the
patch is stable and can already be applied to kernel 5.9. For
the remainder of the section, we use Ubuntu 20.04 with kernel
5.9.0-rc6 and the latest version (version 5) of the FGKASLR
patch [1]. With FGKASLR, the kernel image is also relocated
to a random start address. In addition, the code of most func-
tions is shuffled within the kernel image. This shuffling is
done once at boot time. Hence, to find the address of a target
function, it is required to find the base of the kernel image, and
additionally, the position of the function within the kernel.

Unlike countermeasures such as KPTI [24],
LAZARUS [17], or FLARE [12], FGKASLR does
not change anything in the memory mappings surrounding
the kernel image. Thus, we can use the same attack as
described in Section 4.1 to find the beginning of the kernel
image. The only difference is that at this point, we only know
the base address of the kernel image but no addresses of any
function. One exception is the CPU startup functionality,
spanning 2 pages, is still at the base of the kernel image. This
might already be sufficient for a return-oriented-programming
attack or as a base for continuing with probing the kernel
space. Even with FGKASLR, the kernel image does not have
holes in the virtual memory. Thus, there is no risk in probing
for values as long as the base address is known. Furthermore,
an attacker could resort to speculative probing [19] given an
exploitable Spectre gadget in the kernel.

0 20 40 60

1,100

1,200

1,300

1,400

Offset

E
xe

cu
tio

n
Ti

m
e

Active
Inactive

Figure 7: Template attack for page candidates of a kernel
driver while triggering a supported ioctl syscall. The spike
correlates with the kernel page containing the corresponding
function, allowing to derandomize FGKASLR.

Function Activity Template Attacks. While we were only
able to find the beginning of the kernel image if FGKASLR
is active, we now propose a generic approach to find the ad-
dress of a target function based on the concept of template at-
tacks [10,13,27,56,65]. The principle idea of this technique is
to constantly trigger the targeted event while in parallel prob-
ing each possible candidate. For instance, Gruss et al. [27]
demonstrated cache template attacks by observing cache ac-
tivity using a cache attack on shared libraries for different key
input events. They identified different addresses correlating
to keystrokes, enabling inter-keystroke timing attacks.

Similarly, we probe each candidate page within the possi-
ble range of the detected kernel image while triggering the
execution of the targeted functionality or the access of the
targeted data region. We perform the profiling phase of each
address candidate with the following steps:
1. Preparation: In the preparation step, the state of the TLB

is reset to a known state, i.e., we evict the targeted address
translation from the TLB.

2. Trigger: In the trigger step, the event that accesses or
execute the targeted addresses is induced.

3. Measurement: In the last step, the execution time of the
address translation is timed.

Each probed address with a low timing measurement is a
candidate for the targeted address. If the template attack yields
multiple candidate addresses, i.e., if the event triggers accesses
to multiple pages, another event could be profiled. This event
should then access a subset of addresses as the initial event
excluding the targeted address, allowing reducing the number
of candidate addresses. However, if the exploit requiring the
targeted address allows multiple attempts, the attacker can
mount the attack for all candidate addresses.

Evaluation. We mount our attack on a sample kernel driver,
as kernel exploits targeting a driver (e.g., the recent CVE-
2019-18683) often require the knowledge of the address of
the driver. To obtain the address of the kernel driver, we mount
a function activity template attack on the located kernel image.
We evaluated this attack on an AMD Ryzen 5 2500U running
Linux 5.9 with FGKASLR. To reduce measurement noise, we
repeat the necessary steps for each address 1500 times.



Figure 7 shows the averaged obtained measurements with
TLB-Evict+Prefetch for the 64 candidate addresses for the
target function. The spike at offset 32 correlates with the
actual page of the targeted function triggered via the ioctl.
In comparison, the dotted line shows the averaged obtained
measurements when the target function is not active. Thus,
combining template attacks with TLB-Evict+Prefetch allows
us to successfully find kernel functions in a recent Linux
kernel protected with FGKASLR.

4.3 Spying on Kernel Activity
In this section, we utilize TLB-Evict+Prefetch to monitor
kernel activity. Specifically, we detect active audio transmis-
sions via Bluetooth. For this case study, we assume that we
have already de-randomized the kernel address space (cf. Sec-
tion 4.1).

In contrast to the template attack on the kernel from Sec-
tion 4.2, we do not trigger the kernel activity from the attacker
application. Instead, we rely on an external event, i.e., a Blue-
tooth communication, that is handled in the kernel on the same
core as the attacking application is running. If such an event is
triggered, e.g., by the connected Bluetooth device, the kernel
interrupts the attacker application and continues executing
in the Bluetooth module. For this, the memory management
unit (MMU) has to translate the virtual addresses of the ac-
cessed or executed pages, transparently caching them in the
TLB. By monitoring the address, and thus the TLB state (P2)
using TLB-Evict+Prefetch, an attacker can detect if these
pages have been accessed. Our attack has the following steps
constantly repeated by the attacker:
1. Evict TLB: The attacker evicts entries from the TLB by

accessing arbitrary user space addresses.
2. Scheduling/Interrupt: The attacker process is inter-

rupted to handle an incoming event, e.g., a Bluetooth
packet. Alternatively, the attacker relinquishes the core,
allowing other processes to execute. If the victim accesses
the monitored code, its translation is cached in the TLB.

3. Time: The attacker uses Prefetch+Time, i.e., measures the
execution time of prefetching the monitored address. If a
low timing has been obtained, the attacker can conclude
that the monitored address has been accessed (P2) and,
thus, an event of interest is observed.

Evaluation. We mounted our proof-of-concept implemen-
tation of the attack on an AMD Ryzen 5 2500U CPU, running
Ubuntu 20.04 LTS with Linux kernel 5.9. We pair a smart-
phone with the computer and target the default Bluetooth
kernel module present on Ubuntu without any modifications.

Figure 8 shows the obtained measurements by the attacker
process via TLB-Evict+Prefetch. In each attack iteration, we
attack the same offset in the kernel module. From the plot, we
can see that the Bluetooth module always shows a slight ac-
tivity in the TLB, i.e., the prefetch time is sometimes fast. We

0 100 200 300 400

160

180

200
audio

Time [s]

Pr
ef

et
ch

Ti
m

e
[c

yc
le

]

Figure 8: Detecting Bluetooth audio transmission with TLB-
Evict+Prefetch. After 180 s, a 2:10 min song is played. Dots
below the red line indicate that the page is in the TLB, i.e.,
active, dots above the line indicate that the page is not in the
TLB. During audio transmission, the page is always active.

assume that this is for keeping the connection alive. However,
as soon as we start transmitting audio (gray area), the targeted
address is always present in the TLB until we stop the audio
transmission, leading to always fast prefetch times. Hence,
we can introduce a static threshold (red line). If we do not
measure any prefetch execution times above this threshold,
the Bluetooth module is transmitting an audio stream.

One limitation of the attack on AMD CPUs is that there is
no shared TLB between SMT threads. While the instruction
and the data TLB are competitively shared, i.e., the entries
can be used by both threads, the entries are tagged using
the thread ID [4]. Thus, entries can only be accessed by the
owning thread of the entry. Therefore, cross-core monitoring
is not possible on AMD CPUs.

4.4 Leaking Kernel Memory with Spectre
In this section, we combine Spectre with TLB-Evict+Prefetch
to leak kernel memory from a recent Linux kernel. Since
AMD CPUs are not affected by Meltdown [42], the kernel is
still mapped in user space, as page table isolation [24] is not
enabled. During transient execution, the kernel accesses an
address based on a secret. Thereby, the address is loaded into
the cache, and its translation stored in the TLB.

Most Spectre-type attacks use the cache as a covert chan-
nel and, thus, require shared memory between the kernel and
user space. If the kernel tries to access a user-space address
and SMAP is enabled [3, §5.6.6], the translation raises an
exception. However, TLB-Evict+Prefetch can detect if a page
translation of a kernel address is cached in the TLB (see Sec-
tion 3).

To evaluate TLB-Evict+Prefetch for a Spectre-type at-
tack, we implement a custom kernel module to which
communication is enabled using ioctl from user space.
The module contains a Spectre-PHT gadget accept-
ing an offset variable as an user-controlled argument:
if (offset < data_len) tmp = LUT[data[offset] * 4096];

In contrast to the original Spectre attack [38], an adversary
requires only full control over the offset but no control over
the LUT address. Thus, our attack works without any shared



600

700
Offset 1: ’S’ Offset 2: ’E’

600
700

Offset 3: ’C’ Offset 4: ’R’

0 63 126 189 255

600
700

Offset 5: ’E’

0 63 126 189 255

Offset 6: ’T’

E
xe

cu
tio

n
Ti

m
e

Byte Value

Figure 9: Leaking the secret string SECRET byte-by-byte from
the Linux kernel. The lowest prefetch measurement for each
kernel page correlates to the stored byte at the given offset.

memory between the kernel and user space. A limiting factor
of this attack is the requirement of the knowledge of the kernel
address that is accessed by the Spectre gadget if KASLR is
active on the attacked system. However, in Section 4.1, we
demonstrate that both Prefetch+Time and Prefetch+Power
can derandomize the kernel and, thus, obtain the address. In
contrast, when using Spectre with Prime+Probe on the kernel,
an attacker requires the knowledge of physical addresses to
build an efficient eviction set. Unprivileged access to this
information is typically prevented [37], and attackers can
only resort to less-efficient eviction sets or the use of other
side-channel information in combination with huge pages (if
available) [55].

In our attack, we first mistrain the branch predictor by re-
peatedly providing an index that is within the allowed range.
The CPU follows the branch to access a fixed kernel-location
LUT based on the value stored at data+offset. Then, we
evict the TLB by accessing arbitrary user-space addresses.
Next, we provide an out-of-bounds offset, letting the pro-
cessor speculatively access a memory location based on the
sensitive data located at the given offset. Using prefetch, we
now measure if the kernel address for each of the 256 possible
byte values has been loaded into the TLB. The kernel address
with the lowest execution time for the prefetch instruction
leaks the actual byte value at the given offset. To increase the
likelihood that the processor actually speculatively accessed
the address, we repeat this attack step multiple times.

We successfully recovered a secret string of
1000 characters from Linux kernel 5.10.39 running on
an AMD Ryzen 5 3600. With our unoptimized proof-of-
concept implementation, we can recover the secret bytes
with a success rate of 96.7 % (σ = 4.29) and a leakage
rate of up to 58.98 B/s (52.85 B/s on average, σ = 2.14,
n = 100). In contrast, Lipp et al. [40] achieved a leakage rate
of 0.66 B/s exploiting AMD’s way prediction in a similar
setting. Canella et al. [11] described a similar attack using
Speculative Fetch+Bounce but did not provide any numbers.
For comparison, cache-based covert channels that rely on

32 96 160 224 288 352 416 480
200

250

300

Kernel offset [MB]

E
xe

cu
tio

n
Ti

m
e

PTI No PTI

Figure 10: Access times when prefetching kernel addresses.
The yellow rectangle shows the location of the kernel. While
the KASLR break without KPTI has been successful (blue),
activating KPTI on AMD CPUs eliminates the leakage (red).

shared memory between kernel and user space achieve
leakage rates of up to 5000 B/s [38].

Figure 9 illustrates the obtained measurements of the ex-
ecution time of the different kernel addresses for each out-
of-bounds offset. One can clearly see that the lower values
correlate with the secret byte.

5 Countermeasures

In this section, we discuss different countermeasures and
mitigation strategies for the presented attacks.

Page Table Isolation. With KAISER [24], Gruss et al. pre-
sented a countermeasure to prevent microarchitectural attacks
on the kernel by unmounting the kernel address space while
in user space. Canella et al. [12] proposed to map the entire
kernel address space using dummy mappings to prevent mi-
croarchitectural KASLR breaks. A similar concept was also
presented by Gens et al. [17]. While dummy mappings pre-
vent attacks based on the page-table-level leakage, they do not
prevent TLB- or cache-line-based leakage. The KAISER tech-
nique, implemented as KPTI [18] on Linux and KVAShadow
on Windows [36], prevents exploitation of Meltdown on Intel
CPUs [23, 42]. With this paper, we show that such a stronger
kernel isolation should also be used on AMD CPUs.

To verify if page-table isolation is sufficient on AMD CPUs
to mitigate our attacks, we enforced KPTI (pti=on) on the
Linux kernel 5.4 on an AMD Ryzen 7 3700X CPU. While
running our KASLR break (see Section 4.1) was possible
without PTI, we can see in Figure 10 that we are not able to
locate the kernel image anymore as the kernel addresses are
not mapped in user space. The negative spike at the end is the
still remaining mapped entry region __entry_text_start
that is required to handle interrupts and system calls.

FLARE. With FLARE [12], Canella et al. presented a
generic mitigation against known microarchitectural KASLR
breaks. It uses dummy mappings in the kernel space to elimi-
nate timing differences between mapped and unmapped pages.
We used the proof-of-concept implementation [12] to eval-
uate if it mitigates our KASLR break. Figure 11 shows the



32 96 160 224 288 352 416 480
200
220
240
260
280

Kernel offset [MB]

E
xe

cu
tio

n
Ti

m
e

Flare No Flare

Figure 11: Access times when prefetching kernel addresses.
The yellow rectangle shows the location of the kernel. While
the KASLR break without FLARE has been successful (blue),
activating it on AMD CPUs eliminates the leakage (red).

recorded traces of our KASLR break on a Ryzen 7 3700X.
With FLARE activated, we cannot detect the kernel image.
Note that FLARE does not prevent other presented attacks.

Prefetch Configuration MSRs. While AMD TLBs do not
enable cross-core attacks by design, the timing side-channel
leakage of the prefetch instruction is coherent with the caching
properties of the TLB. Thus, it can not be resolved by dif-
ferent TLB hardware designs. However, we propose two al-
ternative solutions to mitigate the presented side-channels in
future CPUs. As the architectural behavior of the prefetch
instruction is described merely as a hint, the processor is not
required to execute it [3, §3.9.6.1]. Thus, the first and more
aggressive solution is to introduce a bit in an MSR that, if
set, treats every prefetch instruction as a NOP. To estimate
the impact of this mitigation, we analyzed the prevalence of
prefetch instructions. On Ubuntu 20.04, we only found 16
out of 1428 applications and libraries in the system folders
that contain the prefetch instruction. Hence, we argue that the
performance overhead of this mitigation would likely be not
even noticeable.

The second alternative approach is to partially allow
prefetching instruction on certain address ranges. Typically,
the kernel is either mapped on the top or the bottom of the ad-
dress space, i.e., the most-significant bit of kernel addresses is
either 0 or 1, depending on the operating system. We propose
an MSR configuration that disables prefetching instructions
for virtual addresses with either the most-significant bit set
to 0, set to 1, or to disable it for all addresses. Thus, the op-
erating system can disable prefetching instructions on kernel
addresses, mitigating the attacks presented in this paper.

Restricting Access. With the Linux kernel 5.8, the
amd_energy driver provides unprivileged access to the per-
core energy measurements of AMD CPUs. To mitigate
Prefetch+Power-type attacks, limiting user-space access is
necessary to mitigate at least unprivileged attacks. Hence, as a
result of this paper and PLATYPUS [41], AMD first restricted
the access to privileged users, and Linux ultimately removed
the driver in kernel 5.13 [46]. Further, the k10temp exposes
the currents and voltages of the AMD CPUs to unprivileged

users. While we did not evaluate this interface, we recommend
restricting the interface to privileged users as well.

It is possible to prevent unprivileged usage of the high-
resolution timers by setting the CR4.TSD bit [3, §3.2.5]. While
setting this bit prevents an attacker from using rdtsc, rdtscp,
and rdpru, it does not disable all timing primitives. A count-
ing thread can be used as a high-resolution timing primitive
to distinguish timing differences of a few cycles on AMD
CPUs [40]. Moreover, we identified several widespread un-
privileged applications that rely on rdtsc, including XWay-
land, adb, cargo, and Docker. Hence, restricting unprivileged
access to high-resolution timers is not only ineffective against
attacks, but also has adverse effects on benign applications.

6 Related Work & Discussion

In this section, we discuss related and future work.

Prefetcher. Gruss et al. [25] investigated the software
prefetch instruction on Intel CPUs. They showed that the
software prefetch instructions leak the page-table level of in-
accessible virtual addresses and used this observation to build
a KASLR break. Their other observation that the prefetch
instruction allegedly prefetches inaccessible addresses into
the cache, has been shown to be wrongly attributed to the
prefetcher [60]. Schwarzl et al. [60] showed that the actual
root cause of this observation is speculative execution caused
by a Spectre gadget in the kernel. Shin et al. [61] exploited
the hardware prefetchers on Intel CPUs to attack OpenSSL.
Rohan et al. [52] reverse-engineered the hardware stream
prefetcher on Intel CPUs and built a prefetch-based covert
channel. In contrast to previous work, we are the first to ex-
plore the prefetch side channel on AMD CPUs.

TLB Attacks. Gruss et al. [25] exploited the TLB and ad-
dress translation caches on Intel CPUs using the prefetch in-
struction. With TLBleed, Gras et al. [22] reverse-engineered
undocumented address functions of TLBs on Intel CPUs
and recovered EdDSA keys using a Prime+Probe-style at-
tack on the TLB. Koschel et al. [39] exploit tagged TLBs to
break KASLR even in the face of state-of-the-art mitigations.
Schwarz et al. [54] leveraged the store buffer in combination
with the TLB to break KASLR or to infer control flow of the
kernel. However, their necessary attack primitives only apply
to Intel CPUs as they were unsuccessful in reproducing them
on either ARM or AMD CPUs. In this paper, we demonstrate
that similar attacks can be performed on AMD CPUs.

Van Schaik [62, 63] reverse-engineered the MMU to build
eviction sets for the TLB and translation caches on Intel,
AMD, and ARM CPUs to recover AES keys in OpenSSL’s
T-Table implementation. Gras et al. [21] exploit the property
that page-table pages are stored in the last-level cache of Intel
CPUs to break code and heap ASLR from JavaScript.



Power Measurement. While hardware-based power anal-
ysis is usually conducted using physical probes [48, 53],
software-based power analysis allows performing similar at-
tacks without physical access to the attacked device. Gao et al.
[16] used Intel RAPL within containers to co-locate contain-
ers on the same host. In 2017, Fusi [15] showed that the Intel
RAPL interface can be used to observe whether branches have
been taken or if data has been cached but concluded that the
sampling rate to recover RSA keys is too low. In 2018, Man-
tel et al. [44] showed that it can be used to distinguish RSA
keys with different Hamming weight using machine learning
but did not demonstrate concrete attacks. However, in 2021,
Lipp et al. [41] showed that the Intel RAPL interface can
indeed be exploited to leak cryptographic key material and
to break KASLR. They analyzed the side-channel leakage by
showing that one can distinguish between instructions and the
Hamming weight of operands and data. On Intel, they demon-
strated the recovery of AES-NI and RSA keys in unprivileged
and privileged attack scenarios. While they analyzed the leak-
age behavior of an AMD CPU, they did not demonstrate any
attacks. With our KASLR break, we demonstrate the first
software-based power side-channel attack on AMD.

In addition to the power measurement capabilities of the
CPU, research has been conducted on devices that provide
other means of energy measurement of the platform under
attack. Qin et al. [51] and Yan et al. [67] monitored the sys-
tem power information on mobile devices (voltage, current,
battery charge) to distinguish different applications and web-
sites or observing keystrokes. O’Flynn [50] demonstrated
side-channel attacks using an onboard analog-to-digital con-
verter to recover secrets processed in the secure world on a
TrustZone-enabled device.

7 Conclusion

In this paper, we demonstrated that prefetch side channels un-
dermine the isolation between user and kernel space on AMD
CPUs. We introduced three exploit primitives, Prefetch+Time,
Prefetch+Power, and TLB-Evict+Prefetch, that exploit timing
and power variations of the prefetch instructions. We demon-
strated the applicability in real-world scenarios to break (fine-
grained) KASLR, monitor kernel activity, establish a covert
channel, and even leak kernel memory with Spectre gadgets.
Finally, we evaluated existing mitigations and discussed pos-
sible new mitigations to prevent the presented attacks.

Acknowledgments

We would like to thank our anonymous reviewers and in par-
ticular our shepherd, Anil Kurmus, for their feedback that
helped improve this paper. This project has received funding
from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program

(grant agreement No 681402). Additional funding was pro-
vided by a generous gift from Intel. Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the
views of the funding parties.

References

[1] Accardi, Kristen Carlson. Function Granular KASLR,
2020. URL: https://patchwork.kernel.org/
project/kernel-hardening/list/?series=
354389.

[2] Advanced Micro Devices Inc. Software Optimization
Guide for AMD Family 15h Processors, January 2014.

[3] Advanced Micro Devices Inc. AMD64 Architecture
Programmer’s Manual, 2017.

[4] Advanced Micro Devices Inc. Software Optimization
Guide for AMD Family 17h Processors, 2017.

[5] Advanced Micro Devices Inc. Open-Source Register
Reference For AMD Family 17h Processors Models 00h-
2Fh, 3.03 edition, 7 2018.

[6] Advanced Micro Devices Inc. Software Techniques
for Managing Speculation on AMD Processors, 2018.
Revison 7.10.18.

[7] Advanced Micro Devices Inc. AMD uProf User Guide,
3.2 edition, 2019.

[8] Thomas W Barr, Alan L Cox, and Scott Rixner. Transla-
tion Caching: Skip, Don’t Walk (the Page Table). ACM
SIGARCH, 2010.

[9] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandt ner, Alessandro Sorniotti, Babak Falsafi,
Mathias Payer, and Anil Kurmus. SMoTherSpectre:
exploiting speculative execution through port contention.
In ACM Conference on Computer and Communications
Security (CCS), 2019.

[10] Billy Brumley and Risto Hakala. Cache-Timing Tem-
plate Attacks. In International Conference on the The-
ory and Application of Cryptology and Information Se-
curity (AsiaCrypt), 2009.

[11] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. Fallout: Leaking Data
on Meltdown-resistant CPUs. In ACM Conference on
Computer and Communications Security (CCS), 2019.

https://patchwork.kernel.org/project/kernel-hardening/list/?series=354389
https://patchwork.kernel.org/project/kernel-hardening/list/?series=354389
https://patchwork.kernel.org/project/kernel-hardening/list/?series=354389


[12] Claudio Canella, Michael Schwarz, Martin Haubenwall-
ner, Martin Schwarzl, and Daniel Gruss. KASLR: Break
It, Fix It, Repeat. In ACM ASIA Conference on Com-
puter and Communications Security (ASIACCS), 2020.

[13] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Tem-
plate attacks. In Conference on Cryptographic Hard-
ware and Embedded Systems (CHES), 2002.

[14] Naveen Krishna Chatradhi. hwmon: Add amd_energy
driver to report energy counters, 2020. URL: https:
//patchwork.kernel.org/patch/11496005/.

[15] Matteo Fusi. Information-Leakage Analysis Based
on Hardware Performance Counters, 2017. URL:
https://www.politesi.polimi.it/handle/
10589/137507.

[16] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios
Pendarakis, and Haining Wang. ContainerLeaks: Emerg-
ing Security Threats of Information Leakages in Con-
tainer Clouds. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2017.

[17] David Gens, Orlando Arias, Dean Sullivan, Christo-
pher Liebchen, Yier Jin, and Ahmad-Reza Sadeghi.
LAZARUS: Practical Side-Channel Resilient Kernel-
Space Randomization. In International Symposium on
Research in Attacks, Intrusions and Defenses (RAID),
2017.

[18] Thomas Gleixner. x86/kpti: Kernel Page Table Isola-
tion (was KAISER), 2017. URL: https://lkml.org/
lkml/2017/12/4/709.

[19] Enes Göktaş, Kaveh Razavi, Georgios Portokalidis, Her-
bert Bos, and Cristiano Giuffrida. Speculative Probing:
Hacking Blind in the Spectre Era. In ACM Confer-
ence on Computer and Communications Security (CCS),
2020.

[20] Corey Gough, Ian Steiner, and Winston Saunders. En-
ergy Efficient Servers. Apress, 2015.

[21] Ben Gras and Kaveh Razavi. ASLR on the Line: Prac-
tical Cache Attacks on the MMU. In Network and
Distributed System Security Symposium (NDSS), 2017.

[22] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation Leak-aside Buffer: Defeating
Cache Side-channel Protections with TLB Attacks. In
USENIX Security Symposium, 2018.

[23] Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel
Isolation: From an Academic Idea to an Efficient Patch
for Every Computer. USENIX ;login, 2018.

[24] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard.
KASLR is Dead: Long Live KASLR. In Engineering
Secure Software and Systems (ESSoS), 2017.

[25] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch Side-
Channel Attacks: Bypassing SMAP and Kernel ASLR.
In ACM Conference on Computer and Communications
Security (CCS), 2016.

[26] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: A Fast and Stealthy
Cache Attack. In Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA), 2016.

[27] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache Template Attacks: Automating Attacks on Inclu-
sive Last-Level Caches. In USENIX Security Sympo-
sium, 2015.

[28] Hegde, Ravi. Optimizing Application Performance
on Intel® Core™ Microarchitecture Using Hardware-
Implemented Prefetchers, 2008.

[29] Ralf Hund, Carsten Willems, and Thorsten Holz. Practi-
cal Timing Side Channel Attacks against Kernel Space
ASLR. In IEEE Symposium on Security and Privacy
(S&P), 2013.

[30] Intel. TLBs, Paging-Structure Caches, and Their Invali-
dation, 2007. URL: https://software.intel.com/
content/www/us/en/develop/articles/intel-
sdm.html.

[31] Intel. Intel Analysis of Speculative Execution Side Chan-
nels, 2018. Revision 4.0.

[32] Intel. Intel 64 and IA-32 Architectures Optimization
Reference Manual, 2019.

[33] Intel. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual, Volume 3 (3A, 3B & 3C): System
Programming Guide, 2019.

[34] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
Cross processor cache attacks. In ACM ASIA Conference
on Computer and Communications Security (ASIACCS),
2016.

[35] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking
Kernel Address Space Layout Randomization with Intel
TSX. In ACM Conference on Computer and Communi-
cations Security (CCS), 2016.

[36] Ken Johnson. KVA Shadow: Mitigating Meltdown on
Windows, Mar 2018. URL: https://blogs.technet.
microsoft.com/srd/2018/03/23/kva-shadow-
mitigating-meltdown-on-windows/.

https://patchwork.kernel.org/patch/11496005/
https://patchwork.kernel.org/patch/11496005/
https://www.politesi.polimi.it/handle/10589/137507
https://www.politesi.polimi.it/handle/10589/137507
https://lkml.org/lkml/2017/12/4/709
https://lkml.org/lkml/2017/12/4/709
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/


[37] Kirill A. Shutemov. Pagemap: Do Not Leak Phys-
ical Addresses to Non-Privileged Userspace, 2015.
URL: https://git.kernel.org/cgit/linux/
kernel/git/torvalds/linux.git/commit/?id=
ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce.

[38] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In IEEE Symposium on Security
and Privacy (S&P), 2019.

[39] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. TagBleed: Breaking KASLR on the
Isolated Kernel Address Space Using Tagged TLBs. In
IEEE European Symposium on Security and Privacy
(EuroS&P), 2020.

[40] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur
Perais, Clémentine Maurice, and Daniel Gruss. Take
a Way: Exploring the Security Implications of AMD’s
Cache Way Predictors. In ACM ASIA Conference on
Computer and Communications Security (ASIACCS),
2020.

[41] Moritz Lipp, Andreas Kogler, David Oswald, Michael
Schwarz, Catherine Easdon, Claudio Canella, and
Daniel Gruss. PLATYPUS: Software-based Power Side-
Channel Attacks on x86. In IEEE Symposium on Secu-
rity and Privacy (S&P), 2021.

[42] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security Symposium,
2018.

[43] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-Level Cache Side-Channel Attacks
are Practical. In IEEE Symposium on Security and
Privacy (S&P), 2015.

[44] Heiko Mantel, Johannes Schickel, Alexandra Weber,
and Friedrich Weber. How Secure is Green IT? The
Case of Software-Based Energy Side Channels. In Eu-
ropean Symposium on Research in Computer Security
(ESORICS), 2018.

[45] Clémentine Maurice, Manuel Weber, Michael Schwarz,
Lukas Giner, Daniel Gruss, Carlo Alberto Boano, Stefan
Mangard, and Kay Römer. Hello from the Other Side:
SSH over Robust Cache Covert Channels in the Cloud.
In Network and Distributed System Security Symposium
(NDSS), 2017.

[46] Michael Larabel. AMD Energy Driver Booted
From The Linux 5.13 Kernel, 2021. URL:
https://www.phoronix.com/scan.php?page=
news_item&px=Linux-5.13-AMD-Energy-Removed.

[47] Mitchell, Kenneth. AMD Ryzen Processor Software
Optimization, 2020. URL: http://gpuopen.com/wp-
content/uploads/slides/GPUOpen_Let%E2%
80%99sBuild2020_AMD%20Ryzen%E2%84%A2%
20Processor%20Software%20Optimization.pdf.

[48] Mehari Msgna, Konstantinos Markantonakis, and Keith
Mayes. Precise Instruction-Level Side Channel Profiling
of Embedded Processors. In International Conference
on Information Security Practice and Experience, 2014.

[49] Naveen, Krishna Chatradhi. hwmon: amd_energy:
match for supported models, 2020. URL: https://
patchwork.kernel.org/patch/11646271/.

[50] Colin O’Flynn and Alex Dewar. On-Device Power Anal-
ysis Across Hardware Security Domains. Conference
on Cryptographic Hardware and Embedded Systems
(CHES), 2019.

[51] Yi Qin and Chuan Yue. Website Fingerprinting by
Power Estimation Based Side-Channel Attacks on An-
droid 7. In IEEE International Conference on Big Data
Science and Engineering (BigDataSE), 2018.

[52] Aditya Rohan, Biswabandan Panda, and Prakhar Agar-
wal. Reverse engineering the stream prefetcher for
profit. In Security of Software/Hardware Interfaces
(SILM) Workshop, 2020.

[53] Sami Saab, Pankaj Rohatgi, and Craig Hampel. Side-
channel protections for cryptographic instruction set ex-
tensions. IACR Cryptology ePrint Archive, 2016. URL:
https://eprint.iacr.org/2016/700.

[54] Michael Schwarz, Claudio Canella, Lukas Giner, and
Daniel Gruss. Store-to-Leak Forwarding: Leaking Data
on Meltdown-resistant CPUs. arXiv:1905.05725, 2019.

[55] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In
Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2017.

[56] Michael Schwarz, Florian Lackner, and Daniel Gruss.
JavaScript Template Attacks: Automatically Inferring
Host Information for Targeted Exploits. In Network and
Distributed System Security Symposium (NDSS), 2019.

[57] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert
Schilling, Florian Kargl, and Daniel Gruss. ConTExT:
A Generic Approach for Mitigating Spectre. In Network

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.13-AMD-Energy-Removed
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.13-AMD-Energy-Removed
http://gpuopen.com/wp-content/uploads/slides/GPUOpen_Let%E2%80%99sBuild2020_AMD%20Ryzen%E2%84%A2%20Processor%20Software%20Optimization.pdf
http://gpuopen.com/wp-content/uploads/slides/GPUOpen_Let%E2%80%99sBuild2020_AMD%20Ryzen%E2%84%A2%20Processor%20Software%20Optimization.pdf
http://gpuopen.com/wp-content/uploads/slides/GPUOpen_Let%E2%80%99sBuild2020_AMD%20Ryzen%E2%84%A2%20Processor%20Software%20Optimization.pdf
http://gpuopen.com/wp-content/uploads/slides/GPUOpen_Let%E2%80%99sBuild2020_AMD%20Ryzen%E2%84%A2%20Processor%20Software%20Optimization.pdf
https://patchwork.kernel.org/patch/11646271/
https://patchwork.kernel.org/patch/11646271/
https://eprint.iacr.org/2016/700


and Distributed System Security Symposium (NDSS),
2020.

[58] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel
Weiser, Clémentine Maurice, Raphael Spreitzer, and Ste-
fan Mangard. KeyDrown: Eliminating Software-Based
Keystroke Timing Side-Channel Attacks. In Network
and Distributed System Security Symposium (NDSS),
2018.

[59] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-Privilege-Boundary
Data Sampling. In ACM Conference on Computer and
Communications Security (CCS), 2019.

[60] Martin Schwarzl, Thomas Schuster, Michael Schwarz,
and Daniel Gruss. Speculative Dereferencing of Regis-
ters: Reviving Foreshadow. In Financial Cryptography
and Data Security (FC), 2021.

[61] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon,
Ji Hoon Jeong, and Junbeom Hur. Unveiling Hardware-
based Data Prefetcher, a Hidden Source of Information
Leakage. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2018.

[62] Stephan Van Schaik, Cristiano Giuffrida, Herbert Bos,
and Kaveh Razavi. Malicious Management Unit: Why
Stopping Cache Attacks in Software is Harder Than You
Think. In USENIX Security Symposium, 2018.

[63] Stephan Van Schaik, Kaveh Razavi, Ben Gras, Herbert
Bos, and Cristiano Giuffrida. Revanc: A framework for
reverse engineering hardware page table caches. In ACM
European Conference on Computer Systems (EuroSys),
2017.

[64] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael
Schwarz, and Christian Rossow. Osiris: Automated
Discovery Of Microarchitectural Side Channels. In
USENIX Security Symposium, 2021.

[65] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja
Miller, Stefan Mangard, and Georg Sigl. DATA - Differ-
ential Address Trace Analysis: Finding Address-based
Side-Channels in Binaries. In USENIX Security Sympo-
sium, 2018.

[66] Wu, David and Kuepper, Joel. AssemblyLine,
2021. URL: https://github.com/0xADE1A1DE/
AssemblyLine.

[67] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. A
Study on Power Side Channels on Mobile Devices. In
Symposium on Internetware, 2015.

Table 4: Performance counters leveraged to analyze the
prefetch leakage.

Category Counter Description

Pr
ef

et
ch

ls_inef_sw_pref.mab_mch_cnt Software prefetches
that did not fetch data
outside of the proces-
sor core

ls_pref_instr_disp.load_prefetch_w Dispatched
PREFETCHT0/1/2
instructions

ls_pref_instr_disp.prefetch_nta Dispatched
PREFETCHNTA
instructions

T
L

B

ls_l1_d_tlb_miss.all L1 DTLB Miss or
Reload (all sizes)

A Performance Counters

On AMD, we use the performance counters shown in Table 4
to analyze the behavior of the software prefetch instruction.

B Retirement Experiment

In this section, we discuss the measurement code of the re-
tirement experiment discussed in Section 3.3. To obtain a
timestamp, we either use rdpru or rdtscp. As discussed
in Section 3.1, we need to add additional fences if rdpru is
used. We note that we used lfence instructions as mfence,
contrary to its documentation [33], seems to be ordered with
respect to prefetch instructions. Figure 12 shows the measure-
ment code for one of the measured cases. We refer to our
code in our GitHub repository2 for the full implementation.
The obtained results, as shown in Table 5, indicate that loads
triggered by software prefetch instructions are immediately
marked as complete after the address translation. Similar tim-
ing differences are visible for other prefetch instructions such
as prefetcht0.

1 for (size_t i = 0; i < 1000000; i++) {
2 flush(address);
3 lfence();
4 start = get_timestamp();
5

6 prefetch(address);
7 lfence();
8

9 measurements[i] = get_timestamp() - start;
10 }

Figure 12: Retirement Experiment

To rule out the possibility that the prefetch instruction
is not only serialized with respect to cpuid, we designed the

2https://github.com/amdprefetch/amd-prefetch-attacks

https://github.com/0xADE1A1DE/AssemblyLine
https://github.com/0xADE1A1DE/AssemblyLine


50 100 150 200 250
0

0.5

1

⋅104

Number of Instructions

C
yc

le
s

mov prefetcht0

nop

Figure 13: Execution time in cycles of executing prefetcht0
instructions, memory loads and nops.

Table 5: Measured execution times for memory loads and
prefetches.

Instructions Runtime in cycles

movq + cpuid 945.71 (n = 1 000 000, σx̄ = 229.42)
movq + lfence 814.44 (n = 1 000 000, σx̄ = 241.46)

prefetchnta + cpuid 842.96 (n = 1 000 000, σx̄ = 249.07)
prefetchnta + lfence 158.58 (n = 1 000 000, σx̄ = 124.12)

following additional experiment. Using AssemblyLine [66],
we generate code within a single run of our program that
performs a different number of memory loads, respectively,
a different number of prefetch instructions and nops fol-
lowed by a cpuid instruction. Before we emit the first load
or prefetch instruction, we issue a movntdqa instruction that
takes a long time to complete and thus, blocks all subsequently
issued instructions from retiring in the reorder buffer.

We record the measured execution time of each run on an
AMD Ryzen 5 3600 (Zen 2) CPU and present the average
execution time of the performed measurements in Figure 13.

One can clearly see the increase in the execution time of
the load instructions starting when the 44 entries of the load
queue are exhausted. However, for prefetch instructions, the
execution time increases linearly, hinting that the prefetch
instruction does not cause a stall and is immediately marked
as completed. This also confirms the description by AMD that

“[...] a load instruction may cause a subsequent instruction to
stall until the load completes, but a prefetch instruction will
never cause such a stall.” [3, §3.9.6.1]. For the inserted nop
instructions, we observe an increase in the execution time
after 224 instructions corresponding to the number of entries
in the reorder buffer.

C Measured Instruction Sequences

Listing 1 shows the instruction sequences that have been
measured for Figure 1. All instructions are executed in an
endless loop on one CPU core and measured by a different
core using the RAPL interface. Registers are initialized to zero
if not specified otherwise. Note that this specific xor target
leads to a read-after-write hazard, which results in measuring
only a single xor and not multiple parallel xors [9].

1 void target_flush() {
2 asm volatile(
3 "1:\n"
4 "clflush 0(%0)\n"
5 "jmp 1b\n" : : "c"(dst) : "memory");
6 }
7 void target_rdtsc() {
8 asm volatile(
9 "1:\n"

10 "rdtsc\n"
11 "jmp 1b\n" : : : "rax","rdx","memory");
12 }
13 void target_xor() {
14 asm volatile(
15 "1:\n"
16 "xor %%rbx, %%rax\n"
17 "jmp 1b\n" : : : "rbx","rax","memory");
18 }
19 void target_load() {
20 asm volatile(
21 "1:\n"
22 "movq (%0), %%rax\n"
23 "jmp 1b\n" : : "rm"(dst) : "rax","memory");
24 }

Listing 1: The measured instruction sequences for Figure 1.


	Introduction
	Background
	Virtual Memory
	Prefetch
	Address-Space Layout Randomization
	RAPL

	AMD Prefetch Side Channel
	Leakage Analysis Primitives
	Prefetch Leakage
	P1: Page-Table Level
	P2: TLB State

	Difference to Normal Memory Loads
	Exploitation
	Prefetch+Time
	Prefetch+Power
	TLB-Evict+Prefetch

	Covert Channel

	Case Studies
	Kernel Address Space Derandomization
	Breaking Fine-Grained KASLR
	Spying on Kernel Activity
	Leaking Kernel Memory with Spectre

	Countermeasures
	Related Work & Discussion
	Conclusion
	Performance Counters
	Retirement Experiment
	Measured Instruction Sequences

