Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud

<u>Clémentine Maurice</u>, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, Kay Römer Graz University of Technology

February 2017 — NDSS 2017

Outline

- cache covert channels
- how do we get a covert channel working in the cloud?
- how do we get a covert channel working in a noisy environment?
- what are the applications of such covert channel?

main memory is slow compared to the CPU

- main memory is slow compared to the CPU
- caches buffer frequently used data

- main memory is slow compared to the CPU
- caches buffer frequently used data
- every data access goes through the cache

- main memory is slow compared to the CPU
- caches buffer frequently used data
- every data access goes through the cache
- caches are transparent to the OS and the software

■ L1 and L2 are private

L1 and L2 are private

- shared across cores

- L1 and L2 are private
- last-level cache
 - divided in slices
 - shared across cores
 - inclusive
 - hash function maps a physical address to a slice

Data loaded in a specific set depending on its address

Data loaded in a specific set depending on its address

Several ways per set

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy

Timing differences

 $lue{}$ cache attacks ightarrow exploit timing differences of memory accesses

- $lue{}$ cache attacks ightarrow exploit timing differences of memory accesses
- covert channel: two processes communicating with each other
 - not allowed to do so, e.g., across VMs

- ullet cache attacks o exploit timing differences of memory accesses
- covert channel: two processes communicating with each other
 - not allowed to do so, e.g., across VMs
- literature: stops working with noise on the machine

- ullet cache attacks o exploit timing differences of memory accesses
- covert channel: two processes communicating with each other
 - not allowed to do so, e.g., across VMs
- literature: stops working with noise on the machine
- solution? "Just use error-correcting codes"

attacker knows which cache set the victim accessed, not the content

- attacker knows which cache set the victim accessed, not the content
- works across CPU cores as the last-level cache is shared

- attacker knows which cache set the victim accessed, not the content
- works across CPU cores as the last-level cache is shared
- does not need shared memory, e.g., memory de-deduplication

- attacker knows which cache set the victim accessed, not the content
- works across CPU cores as the last-level cache is shared
- does not need shared memory, e.g., memory de-deduplication
- → works across VM in the cloud, e.g., on Amazon EC2

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 1: Attacker primes, *i.e.*, fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 1: Attacker primes, *i.e.*, fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

(a) Transmission without errors

(c) Sender descheduled: insertions

(a) Transmission without errors

(c) Sender descheduled: insertions

(b) Noise: substitution error

(d) Receiver descheduled: deletions

Our robust covert channel

- physical layer:
 - transmits words as a sequence of 'o's and '1's
 - deals with synchronization errors
- data-link layer:
 - divides data to transmit into packets
 - corrects the remaining errors

Physical layer: Sending 'o's and '1's

sender and receiver agree on one set

Physical layer: Sending '0's and '1's

- sender and receiver agree on one set
- receiver probes the set continuously

Physical layer: Sending 'o's and '1's

- sender and receiver agree on one set
- receiver probes the set continuously
- sender transmits 'o' doing nothing
 - \rightarrow lines of the receiver still in cache \rightarrow fast access

Physical layer: Sending 'o's and '1's

- sender and receiver agree on one set
- receiver probes the set continuously
- sender transmits 'o' doing nothing
 - \rightarrow lines of the receiver still in cache \rightarrow fast access
- sender transmits '1' accessing addresses in the set
 - \rightarrow evicts lines of the receiver \rightarrow slow access

need a set of addresses in the same cache set and same slice

- need a set of addresses in the same cache set and same slice
- problem: slice number depends on all bits of the physical address

- need a set of addresses in the same cache set and same slice
- problem: slice number depends on all bits of the physical address

• we can build a set of addresses in the same cache set and same slice

- need a set of addresses in the same cache set and same slice
- problem: slice number depends on all bits of the physical address

- we can build a set of addresses in the same cache set and same slice
- without knowing which slice

repeat!

repeat!

repeat!

Sending the first image

Handling synchronization errors

Physical layer word

Data

12 bits

Handling synchronization errors

- deletion errors: request-to-send scheme that also serves as ack
 - 3-bit sequence number
 - request: encoded sequence number (7 bits)

Physical layer word

Data

SQN

12 bits
3 bits

Handling synchronization errors

- deletion errors: request-to-send scheme that also serves as ack
 - 3-bit sequence number
 - request: encoded sequence number (7 bits)
- 'o'-insertion errors: error detection code → Berger codes
 - appending the number of 'o's in the word to itself
 - \rightarrow property: a word cannot consist solely of 'o's

Physical layer word

Data

SQN EDC

12 bits

3 bits 4 bits

Synchronization (before)

Synchronization (after)

Synchronization (after)

Synchronization (after)

Data-link layer: Error correction

Reed-Solomon codes to correct the remaining errors

Data-link layer: Error correction

- Reed-Solomon codes to correct the remaining errors
- RS word size = physical layer word size = 12 bits
- packet size = $2^{12} 1 = 4095$ RS words
- 10% error-correcting code: 409 parity and 3686 data RS words

Error correction (after)

Environment	Bit rate	Error rate	Noise
Native	75.10 KBps	0.00%	-

Environment	Bit rate	Error rate	Noise
Native	75.10 KBps	0.00%	-
Native	36.03 KBps	0.00%	stress -m 1

Environment	Bit rate	Error rate	Noise
Native Native Amazon EC2	75.10 KBps 36.03 KBps 45.25 KBps	0.00% 0.00% 0.00%	stress -m 1

Environment	Bit rate	Error rate	Noise
Native	75.10 KBps	0.00%	-
Native	36.03 KBps	0.00%	stress -m 1
Amazon EC2	45.25 KBps	0.00%	_
Amazon EC2	45.09 KBps	0.00%	web server serving files on sender VM
Amazon EC2	42.96 KBps	0.00%	stress -m 2 on sender VM
Amazon EC2	42.26 KBps	0.00%	stress -m 1 on receiver VM
Amazon EC2	37.42 KBps	0.00%	web server on all 3 VMs, stress -m
			4 on 3rd VM, stress -m 1 on sender
			and receiver VMs
Amazon EC2	34.27 KBps	0.00%	stress -m 8 on third VM

Building an SSH connection

SSH evaluation

Between two instances on Amazon EC2

Noise	Connection
No noise	✓
stress -m 8 on third VM	✓
Web server on third VM	✓
Web server on SSH server VM	✓
Web server on all VMs	✓
stress -m 1 on server side	unstable

SSH evaluation

Between two instances on Amazon EC2

Noise	Connection
No noise	✓
stress -m 8 on third VM	✓
Web server on third VM	✓
Web server on SSH server VM	✓
Web server on all VMs	\checkmark
stress -m 1 on server side	unstable

Telnet also works with occasional corrupted bytes with stress -m 1

cache covert channels are practical

- cache covert channels are practical
- even in the cloud, even in presence of extraordinary noise

- cache covert channels are practical
- even in the cloud, even in presence of extraordinary noise
- our robust covert channel supports an SSH connection

- cache covert channels are practical
- even in the cloud, even in presence of extraordinary noise
- our robust covert channel supports an SSH connection
- we extended Amazon's product portfolio :)

- cache covert channels are practical
- even in the cloud, even in presence of extraordinary noise
- our robust covert channel supports an SSH connection
- we extended Amazon's product portfolio :)

- cache covert channels are practical
- even in the cloud, even in presence of extraordinary noise
- our robust covert channel supports an SSH connection
- we extended Amazon's product portfolio :)

Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud

<u>Clémentine Maurice</u>, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, Kay Römer Graz University of Technology

February 2017 — NDSS 2017