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Abstract

In our talk, we show that despite all doubts, it is practical to implement
malware inside SGX. Moreover, this malware uses the protection features
of SGX to hide itself from all state-of-the-art detection mechanisms. We
show that an unprivileged user can execute malware inside an SGX enclave
that uses a cache attack to extract a secret RSA key from a co-located
enclave. Our malware does not use any kernel component, privileges,
or operating system modifications to proxy commands from the enclave.
Instead, we built novel techniques to mount the attack without operating
system support. For a code reviewer, our enclave code looks like a benign
series of simple memory accesses and loops.

We demonstrate that this attack is practical by mounting a cross-
enclave attack to recover a full 4096-bit RSA key used in a secure signature
process. This scenario can be found in real-world situations for Bitcoin
wallets that are implemented inside SGX to protect the private key. With
an SGX enclave, existing detection techniques (Herath and Fogh, Black-
Hat USA 2015) are not applicable anymore. The main takeaway is that
SGX helps attackers in hiding their malware, without even requiring any
privileges (i.e., no root privileges).

Additionally, so-called double fetch bugs are problems in APIs which
can often be exploited to hijack the program flow inside a higher-privileged
domain, such as given by the enclave. We show that cache attacks can be
used to dynamically detect such vulnerabilities in secure enclaves without
access to its code or even the binary.

Furthermore, the cache can be used as a primitive to reliably exploit
such vulnerabilities, allowing to leak secrets such as private keys from
enclaves. In our live demonstration, we show that SGX is not a miracle
cure for badly written software and high-quality software is still required
to protect secret information.

1 Overview

This whitepaper does not only cover the topics of our talk but also provides more
technical details. It provides more detailed insight into the attack techniques
presented in the talk and also provides a more thorough evaluation of all results.
Furthermore, the whitepaper contains additional attack scenarios, such as the
applicability of cache attacks from SGX applications which are isolated using
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Docker containers. We also describe double-fetch scenarios in different environ-
ments, such as the Linux kernel and the ARM TrustZone, and how double-fetch
detection can complement state-of-the-art fuzzing approaches.

This whitepaper consists of two parts. The first part was published as a
paper at the 14th International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment 2017 with the title “Malware Guard Exten-
sion: Using SGX to Conceal Cache Attacks”. The paper describes how cache
attacks (specifically Prime+Probe) can be mounted from SGX enclaves, to at-
tack the outside world as well as other co-located enclaves. These scenarios are
both evaluated in a native environment, as well as across Docker containers. In
all scenarios, we are able to extract a 4096-bit RSA key from an enclave with
only 11 traces.

The second part was published as a paper at the 13th ACM ASIA Conference
on Information, Computer and Communications Security 2018 with the title
“Automated Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features”. The paper discusses an automated dynamic
method for detecting and exploiting double-fetch bugs using the cache as a side
channel. The target is mainly the Linux kernel, to detect such bugs in the syscall
interfaces, by complementing syscall fuzzers. However, it also generalizes the
method for a wide range of scenarios, including Intel SGX and ARM TrustZone.
As presented in the talk, the double-fetch detection using a cache-based side-
channel allows detecting and reliably exploiting double-fetch bugs even if neither
the source code nor the binary is available for analysis. Although the technique
might seem odd to some researchers, it is a practical method to detect such bugs
in these cases where no other analysis method is applicable. Finally, the paper
presents a novel method to prevent the exploitation of double-fetch bugs, as it is
also briefly discussed in the talk. We present a library which leverages Intel TSX,
an instruction set extension implementing hardware transactional memory, to
group multiple data fetches into one atomic operation, entirely preventing any
exploitation attempt.

The main takeaways of both the talk and the whitepaper are as follows.

1. Despite all doubts, malware can be implemented in SGX.

2. Security features can be abused by attackers to better hide their attacks.

3. Bad code is bad code, independent of the execution environment. Writing
high-quality code is still necessary to make it secure.

Simply put, combining exploitable code with Intel SGX only results in ex-
ploitable SGX enclaves.
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Abstract. In modern computer systems, user processes are isolated
from each other by the operating system and the hardware. Additionally,
in a cloud scenario it is crucial that the hypervisor isolates tenants from
other tenants that are co-located on the same physical machine. However,
the hypervisor does not protect tenants against the cloud provider and
thus the supplied operating system and hardware. Intel SGX provides a
mechanism that addresses this scenario. It aims at protecting user-level
software from attacks from other processes, the operating system, and
even physical attackers.
In this paper, we demonstrate fine-grained software-based side-channel
attacks from a malicious SGX enclave targeting co-located enclaves. Our
attack is the first malware running on real SGX hardware, abusing SGX
protection features to conceal itself. Furthermore, we demonstrate our at-
tack both in a native environment and across multiple Docker containers.
We perform a Prime+Probe cache side-channel attack on a co-located
SGX enclave running an up-to-date RSA implementation that uses a
constant-time multiplication primitive. The attack works although in
SGX enclaves there are no timers, no large pages, no physical addresses,
and no shared memory. In a semi-synchronous attack, we extract 96 % of
an RSA private key from a single trace. We extract the full RSA private
key in an automated attack from 11 traces.

1 Introduction

Modern operating systems isolate user processes from each other to protect se-
crets in different processes. Such secrets include passwords stored in password
managers or private keys to access company networks. Leakage of these secrets
can compromise both private and corporate systems. Similar problems arise in
the cloud. Therefore, cloud providers use virtualization as an additional pro-
tection using a hypervisor. The hypervisor isolates different tenants that are
co-located on the same physical machine. However, the hypervisor does not pro-
tect tenants against a possibly malicious cloud provider.

Although hypervisors provide functional isolation, side-channel attacks are
often not considered. Consequently, researchers have demonstrated various side-
channel attacks, especially those exploiting the cache [15]. Cache side-channel
attacks can recover cryptographic secrets, such as AES [29] and RSA [33] keys,
across virtual machine boundaries.
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Intel introduced a new hardware extension SGX (Software Guard Exten-
sions) [27] in their CPUs, starting with the Skylake microarchitecture. SGX is
an isolation mechanism, aiming at protecting code and data from modification
or disclosure even if all privileged software is malicious [10]. This protection uses
special execution environments, so-called enclaves, which work on memory areas
that are isolated from the operating system by the hardware. The memory area
used by the enclaves is encrypted to protect application secrets from hardware
attackers. Typical use cases include password input, password managers, and
cryptographic operations. Intel recommends storing cryptographic keys inside
enclaves and claims that side-channel attacks “are thwarted since the memory
is protected by hardware encryption” [25].

Hardware-supported isolation also led to fear of super malware inside en-
claves. Rutkowska [44] outlined a scenario where an enclave fetches encrypted
malware from an external server and executes it within the enlave. In this sce-
nario, it is impossible to debug, reverse engineer, or analyze the executed malware
in any way. Costan et al. [10] eliminated this fear by arguing that enclaves always
run with user space privileges and can neither issue syscalls nor perform any I/O
operations. Moreover, SGX is a highly restrictive environment for implement-
ing cache side-channel attacks. Both state-of-the-art malware and side-channel
attacks rely on several primitives that are not available in SGX enclaves.

In this paper, we show that it is very well possible for enclave malware to
attack its hosting system. We demonstrate a cross-enclave cache attack from
within a malicious enclave that is extracting secret keys from co-located enclaves.
Our proof-of-concept malware is able to recover RSA keys by monitoring cache
access patterns of an RSA signature process in a semi-synchronous attack. The
malware code is completely invisible to the operating system and cannot be
analyzed due to the isolation provided by SGX. We present novel approaches
to recover physical address bits, as well as to recover high-resolution timing in
absence of the timestamp counter, which has an even higher resolution than
the native one. In an even stronger attack scenario, we show that an additional
isolation using Docker containers does not protect against this kind of attack.

We make the following contributions:

1. We demonstrate that, despite the restrictions of SGX, cache attacks can be
performed from within an enclave to attack a co-located enclave.

2. By combining DRAM and cache side channels, we present a novel approach
to recover physical address bits even if 2 MB pages are unavailable.

3. We obtain high-resolution timestamps in enclaves without access to the na-
tive timestamp counter, with an even higher resolution than the native one.

4. In an automated end-to-end attack on the wide-spread mbedTLS RSA im-
plementation, we extract 96 % of an RSA private key from a single trace.

Section 2 presents the required background. Section 3 outlines the threat
model and attack scenario. Section 4 describes the measurement methods and
the online phase of the malware. Section 5 explains the offline-phase key recov-
ery. Section 6 evaluates the attack against an up-to-date RSA implementation.
Section 7 discusses several countermeasures. Section 8 concludes our work.



Malware Guard Extension: Using SGX to Conceal Cache Attacks

2 Background

2.1 Intel SGX in Native and Virtualized Environments

Intel Software Guard Extensions (SGX) are a new set of x86 instructions intro-
duced with the Skylake microarchitecture. SGX allows protecting the execution
of user programs in so-called enclaves. Only the enclave can access its own mem-
ory region, any other access to it is blocked by the CPU. As SGX enforces this
policy in hardware, enclaves do not need to rely on the security of the operating
system. In fact, with SGX the operating system is generally not trusted. By do-
ing sensitive computation inside an enclave, one can effectively protect against
traditional malware, even if such malware has obtained kernel privileges. Fur-
thermore, it allows running secret code in a cloud environment without trusting
hardware and operating system of the cloud provider.

An enclave resides in the virtual memory area of an ordinary application pro-
cess. This virtual memory region of the enclave can only be backed by physically
protected pages from the so-called Enclave Page Cache (EPC). The EPC itself is
a contiguous physical block of memory in DRAM that is encrypted transparently
to protect against hardware attacks.

Loading of enclaves is done by the operating system. To protect the integrity
of enclave code, the loading procedure is measured by the CPU. If the resulting
measurement does not match the value specified by the enclave developer, the
CPU will refuse to run the enclave.

Since enclave code is known to the (untrusted) operating system, it can-
not carry hard-coded secrets. Before giving secrets to an enclave, a provisioning
party has to ensure that the enclave has not been tampered with. SGX there-
fore provides remote attestation, which proves correct enclave loading via the
aforementioned enclave measurement.

At the time of writing, no hypervisor with SGX support was available. How-
ever, Arnautov et al. [4] proposed to combine Docker containers with SGX to
create secure containers. Docker is an operating-system-level virtualization soft-
ware that allows applications to run in separate containers. It is a standard
runtime for containers on Linux which is supported by multiple public cloud
providers. Unlike virtual machines, Docker containers share the kernel and other
resources with the host system, requiring fewer resources than a virtual machine.

2.2 Microarchitectural Attacks

Microarchitectural attacks exploit hardware properties that allow inferring in-
formation on other processes running on the same system. In particular, cache
attacks exploit the timing difference between the CPU cache and the main mem-
ory. They have been the most studied microarchitectural attacks for the past 20
years, and were found to be powerful to derive cryptographic secrets [15]. Mod-
ern attacks target the last-level cache, which is shared among all CPU cores.
Last-level caches (LLC) are usually built as n-way set-associative caches. They
consist of S cache sets and each cache set consists of n cache ways with a size of
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64 B. The lowest 6 physical address bits determine the byte offset within a cache
way, the following log2 S bits starting with bit 6 determine the cache set.

Prime+Probe is a cache attack technique that has first been used by Os-
vik et al. [39]. In a Prime+Probe attack, the attacker constantly primes (i.e.,
evicts) a cache set and measures how long this step took. The runtime of the
prime step is correlated to the number of cache ways that have been replaced
by other programs. This allows deriving whether or not a victim application
performed a specific secret-dependent memory access. Recent work has shown
that this technique can even be used across virtual machine boundaries [33,35].

To prime (i.e., evict) a cache set, the attacker uses n addresses in same cache
set (i.e., an eviction set), where n depends on the cache replacement policy
and the number of ways. To minimize the amount of time the prime step takes,
it is necessary to find a minimal n combined with a fast access pattern (i.e.,
an eviction strategy). Gruss et al. [18] experimentally found efficient eviction
strategies with high eviction rates and a small number of addresses. We use
their eviction strategy on our Skylake test machine throughout the paper.

Pessl et al. [42] found a similar attack through DRAM modules. Each DRAM
module has a row buffer that holds the most recently accessed DRAM row. While
accesses to this buffer are fast, accesses to other memory locations in DRAM
are much slower. This timing difference can be exploited to obtain fine-grained
information across virtual machine boundaries.

2.3 Side-Channel Attacks on SGX

Intel claims that SGX features impair side-channel attacks and recommends us-
ing SGX enclaves to protect password managers and cryptographic keys against
side channels [25]. However, there have been speculations that SGX could be vul-
nerable to side-channel attacks [10]. Xu et al. [50] showed that SGX is vulnerable
to page fault side-channel attacks from a malicious operating system [1].

SGX enclaves generally do not share memory with other enclaves, the op-
erating system or other processes. Thus, any attack requiring shared memory
is not possible, e.g., Flush+Reload [51]. Also, DRAM-based attacks cannot be
performed from a malicious operating system, as the hardware prevents any
operating system accesses to DRAM rows in the EPC. However, enclaves can
mount DRAM-based attacks on other enclaves because all enclaves are located
in the same physical EPC.

In concurrent work, Brasser et al. [8], Moghimi et al. [37] and Götzfried et al.
[17] demonstrated cache attacks on SGX relying on a malicious operating system.

2.4 Side-Channel Attacks on RSA

RSA is widely used to create asymmetric signatures, and is implemented by
virtually every TLS library, such as OpenSSL or mbedTLS , which is used for
instance in cURL and OpenVPN. RSA essentially involves modular exponen-
tiation with a private key, typically using a square-and-multiply algorithm. An
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unprotected implementation of square-and-multiply is vulnerable to a variety of
side-channel attacks, in which an attacker learns the exponent by distinguishing
the square step from the multiplication step [15,51]. mbedTLS uses a windowed
square-and-multiply routine for the exponentiation. Liu et al. [33] showed that
if an attack on a window size of 1 is possible, the attack can be extended to
arbitrary window sizes.

Earlier versions of mbedTLS were vulnerable to a timing side-channel attack
on RSA-CRT [3]. Due to this attack, current versions of mbedTLS implement
a constant-time Montgomery multiplication for RSA. Additionally, instead of
using a dedicated square routine, the square operation is carried out using the
multiplication routine. Thus, there is no leakage from a different square and
multiplication routine as exploited in previous attacks on square-and-multiply
algorithms [33, 51]. However, Liu et al. [33] showed that the secret-dependent
accesses to the buffer b still leak the exponent. Boneh et al. [7] and Blömer et al.
[6] recovered the full RSA private key if only parts of the key bits are known.

3 Threat Model and Attack Setup

In this section, we present our threat model. We demonstrate a malware that
circumvents SGX and Docker isolation guarantees. We successfully mount a
Prime+Probe attack on an RSA signature computation running inside a different
enclave, on the outside world, and across container boundaries.

3.1 High-Level View of the Attack

In our threat model, both the attacker and the victim are running on the same
physical machine. The machine can either be a user’s local computer or a host
in the cloud. In the cloud scenario, the victim has its enclave running in a
Docker container to provide services to other applications running on the host.
Docker containers are well supported on many cloud providers, e.g., Amazon [13]
or Microsoft Azure [36]. As these containers are more lightweight than virtual
machines, a host can run up to several hundred containers simultaneously. Thus,
the attacker has good chances to get a co-located container on a cloud provider.

Figure 1 gives an overview of our native setup. The victim runs a crypto-
graphic computation inside the enclave to protect it against any attacks. The
attacker tries to stealthily extract secrets from this victim enclave. Both the at-
tacker and the victim use Intel SGX features and thus are subdivided into two
parts, the enclave and loader, i.e., the main program instantiating the enclave.

The attack is a multi-step process that can be divided into an online and
an offline phase. Section 4 describes the online phase, in which the attacker first
locates the victim’s cache sets that contain the secret-dependent data of the RSA
private key. The attacker then monitors the identified cache sets while triggering
a signature computation. Section 5 gives a detailed explanation of the offline
phase in which the attacker recovers a private key from collected traces.
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Fig. 1: The threat model: both attacker and victim run on the same physical
machine in different SGX enclaves.

3.2 Victim

The victim is an unprivileged program that uses SGX to protect an RSA signing
application from both software and hardware attackers. Both the RSA imple-
mentation and the private key reside inside the enclave, as suggested by In-
tel [25]. Thus, they can never be accessed by system software or malware on the
same host. Moreover, memory encryption prevents physical information leakage
in DRAM. The victim uses the RSA implementation of the widely deployed
mbedTLS library. The mbedTLS library implements a windowed square-and-
multiply algorithm, that relies on constant-time Montgomery multiplications.
The window size is fixed to 1, as suggested by the official knowledge base [2].
The victim application provides an API to compute a signature for provided
data.

3.3 Attacker

The attacker runs an unprivileged program on the same host machine as the
victim. The goal of the attacker is to stealthily extract the private key from the
victim enclave. Therefore, the attacker uses the API provided by the victim to
trigger signature computations.

The attacker targets the exponentiation step of the RSA implementation.
The attack works on arbitrary window sizes [33], including window size 1. To
prevent information leakage from function calls, mbedTLS uses the same function
(mpi montmul) for both the square and the multiply operation. The mpi montmul

takes two parameters that are multiplied together. For the square operation, the
function is called with the current buffer as both arguments. For the multiply op-
eration, the current buffer is multiplied with a buffer holding the multiplier. This
buffer is allocated in the calling function mbedtls mpi exp mod using calloc.
Due to the deterministic behavior of the tlibc calloc implementation, the used
buffers always have the same virtual and physical addresses and thus the same
cache sets. The attacker can therefore mount a Prime+Probe attack on the cache
sets containing the buffer.

In order to remain stealthy, all parts of the malware that contain attack
code reside inside an SGX enclave. The enclave can protect the encrypted real
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attack code by only decrypting it after a successful remote attestation after
which the enclave receives the decryption key. As pages in SGX can be mapped
as writable and executable, self-modifying code is possible and therefore code
can be encrypted. Consequently, the attack is completely stealthy and invisible
from anti-virus software and even from monitoring software running in ring 0.
Note that our proof-of-concept implementation does not encrypt the attack code
as this has no impact on the attack.

The loader does not contain any suspicious code or data, it is only required
to start the enclave and send the exfiltrated data to the attacker.

3.4 Operating System and Hardware

Previous work was mostly focused on attacks on enclaves from untrusted cloud
operating systems [10,46]. However, in our attack we do not make any assump-
tions on the underlying operating system, i.e., we do not rely on a malicious
operating system. Both the attacker and the victim are unprivileged user space
applications. Our attack works on a fully-patched recent operating system with
no known software vulnerabilities, i.e., the attacker cannot elevate privileges.

We expect the cloud provider to run state-of-the-art malware detection soft-
ware. We assume that the malware detection software is able to monitor the be-
havior of containers and inspect the content of containers. Moreover, the user can
run anti-virus software and monitor programs inside the container. We assume
that the protection mechanisms are either signature-based, behavioral-based,
heuristics-based or use performance counters [12,21].

Our only assumption on the hardware is that attacker and victim run on the
same host system. This is the case on both personal computers and on co-located
Docker instances in the cloud. As SGX is currently only available on Intel Skylake
CPUs, it is valid to assume that the host is a Skylake system. Consequently, we
know that the last-level cache is shared between all CPU cores.

4 Extracting Private Key Information

In this section, we describe the online phase of our attack. We first build primi-
tives necessary to mount this attack. Then we show in two steps how to locate
and monitor cache sets to extract private key information.

4.1 Attack Primitives in SGX

Successful Prime+Probe attacks require two primitives: a high-resolution timer
to distinguish cache hits and misses and a method to generate an eviction set
for arbitrary cache sets. Due to the restrictions of SGX enclaves, implement-
ing Prime+Probe in enclaves is not straight-forward. Therefore, we require new
techniques to build a malware from within an enclave.

High-resolution Timer. The unprivileged rdtsc and rdtscp instructions,
which read the timestamp counter, are usually used for fine-grained timing out-
side enclaves. In SGX, these instructions are not permitted inside an enclave,
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as they might cause a VM exit [24]. Thus, we have to rely on a different timing
source with a resolution in the order of 10 cycles to reliably distinguish cache
hits from misses as well as DRAM row hits from row conflicts.

To achieve the highest number of increments, we handcraft a counter
thread [31,49] in inline assembly. The counter variable has to be accessible across
threads, thus it is necessary to store the counter variable in memory. Memory
addresses as operands incur an additional cost of approximately 4 cycles due to
L1 cache access times [23]. On our test machine, a simple counting thread exe-
cuting 1: incl (%rcx); jmp 1b achieves one increment every 4.7 cycles, which
is an improvement of approximately 2 % over the best code generated by gcc.

We can improve the performance—and thus the resolution—further, by ex-
ploiting the fact that only the counting thread modifies the counter variable.
We can omit reading the counter variable from memory. Therefore, we intro-
duce a “shadow counter variable” which is always held in a CPU register. The
arithmetic operation (either add or inc) is performed on this register, unleash-
ing the low latency and throughput of these instructions. As registers cannot
be shared across threads, the shadow counter has to be moved to memory
using the mov instruction after each increment. Similar to the inc and add

instruction, the mov instruction has a latency of 1 cycle and a throughput of
0.5 cycles/instruction when copying a register to memory. The improved count-
ing thread, 1: inc %rax; mov %rax, (%rcx), jmp 1b, is significantly faster
and increments the variable by one every 0.87 cycles, which is an improvement
of 440 % over the simple counting thread. In fact, this version is even 15 % faster
than the native timestamp counter, thus giving us a reliable timing source with
even higher resolution. This new method might open new possibilities of side-
channel attacks that leak information through timing on a sub-rdtsc level.

Eviction Set Generation. Prime+Probe relies on eviction sets, i.e., we
need to find virtual addresses that map to the same physical cache set. An un-
privileged process cannot translate virtual to physical addresses and therefore
cannot simply search for virtual addresses that fall into the same cache set.
Liu et al. [33] and Maurice et al. [35] demonstrated algorithms to build eviction
sets using large pages by exploiting the fact that the virtual address and the
physical address have the same lowest 21 bits. As SGX does not support large
pages, this approach is inapplicable. Oren et al. [38] and Gruss et al. [18] demon-
strated automated methods to generate eviction sets for a given virtual address.
Due to microarchitectural changes their approaches are either not applicable at
all to the Skylake architecture or consume several hours on average before even
starting the actual Prime+Probe attack.

We propose a new method to recover the cache set from a virtual address
without relying on large pages. The idea is to exploit contiguous page alloca-
tion [28] and DRAM timing differences to recover DRAM row boundaries. The
DRAM mapping functions [42] allow to recover physical address bits.

The DRAM organization into banks and rows causes timing differences. Al-
ternately accessing pairs of two virtual addresses that map to the same DRAM
bank but a different row is significantly slower than any other combination of
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Fig. 2: Access times when alternately accessing two addresses which are 64 B
apart. The (marked) high access times indicate row conflicts.

virtual addresses. Figure 2 shows the average access time for address pairs when
iterating over a 2 MB array. The highest two peaks show row conflicts, i.e., the
row index changes while the bank, rank, and channel stay the same.

To recover physical address bits we use the reverse-engineered DRAM map-
ping function as shown in Table 1. Our test machine is an Intel Core i5-6200U
with 12 GB main memory. The row index is determined by physical address bits
18 and upwards. Hence, the first address of a DRAM row has the least-significant
18 bits of the physical address set to ‘0’. To detect row borders, we scan memory
sequentially for an address pair in physical proximity that causes a row conflict.
As SGX enclave memory is allocated contiguously we can perform this scan on
virtual addresses.

A virtual address pair that causes row conflicts at the beginning of a row
satisfies the following constraints:

1. The least-significant 18 physical address bits of one virtual address are zero.
This constitutes a DRAM row border.

2. The bank address (BA), bank group (BG), rank, and channel determine the
DRAM bank and must be the same for both virtual addresses.

3. The row index must be different for both addresses to cause a row conflict.
4. The difference of the two virtual addresses has to be at least 64 B (the size

of one cache line) but should not exceed 4 kB (the size of one page).

Physical address bits 6 to 17 determine the cache set which we want to
recover. Hence, we search for address pairs where physical address bits 6 to 17
have the same known but arbitrary value.

Address Bit
22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06

2 DIMMs

Channel ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
BG0 ⊕ ⊕
BG1 ⊕ ⊕
BA0 ⊕ ⊕
BA1 ⊕ ⊕
Rank ⊕ ⊕

Table 1: Reverse-engineered DRAM mapping functions from Pessl et al. [42].
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To find address pairs fulfilling the aforementioned constraints, we modeled
the mapping function and the constraints as an SMT problem and used the
Z3 theorem prover [11] to provide models satisfying the constraints. The model
we found yields pairs of physical addresses where the upper address is 64 B
apart from the lower one. There are four such address pairs within every 4 MB
block of physical memory such that each pair maps to the same bank but a
different row. The least-significant bits of the physical address pairs are ei-
ther (0x3fffc0, 0x400000), (0x7fffc0, 0x800000), (0xbfffc0, 0xc00000) or
(0xffffc0, 0x1000000) for the lower and higher address respectively. Thus, at
least 22 bits of the higher addresses least-significant bits are 0. As the cache set
is determined by the bits 6 to 17, the higher address has the cache set index 0.
We observe that satisfying address pairs are always 256 KB apart. Since we have
contiguous memory [28], we can generate addresses mapping to the same cache
set by adding multiples of 256 KB to the higher address.

In modern CPUs, the last-level cache is split into cache slices. Addresses with
the same cache set index map to different cache slices based on the remaining
address bits. To generate an eviction set, it is necessary to only use addresses
that map to the same cache set in the same cache slice. However, to calculate
the cache slice, all bits of the physical address are required [34].

As we are not able to directly calculate the cache slice, we use another ap-
proach. We add our calculated addresses from the correct cache set to our evic-
tion set until the eviction rate is sufficiently high. Then, we try to remove single
addresses from the eviction set as long as the eviction rate does not drop. Thus,
we remove all addresses that do not contribute to the eviction, and the result is a
minimal eviction set. Our approach takes on average 2 seconds per cache set, as
we already know that our addresses map to the correct cache set. This is nearly
three orders of magnitude faster than the approach of Gruss et al. [18]. Older
techniques that have been comparably fast do not work on current hardware
anymore due to microarchitectural changes [33,38].

4.2 Identifying and Monitoring Vulnerable Sets

With the reliable high-resolution timer and a method to generate eviction sets,
we can mount the first stage of the attack and identify the vulnerable cache sets.
As we do not have any information about the physical addresses of the victim,
we have to scan the last-level cache for characteristic patterns corresponding to
the signature process. We consecutively mount a Prime+Probe attack on every
cache set while the victim is executing the exponentiation step.

We can then identify multiple cache sets showing the distinctive pattern of
the signature operation. The number of cache sets depends on the RSA key size.
Cache sets at the buffer boundaries might be used by neighboring buffers and
are more likely to be prefetched [20,51] and thus, prone to measurement errors.
Consequently, we use cache sets neither at the start nor the end of the buffer.

The measurement method is the same as for detecting the vulnerable cache
sets, i.e., we again use Prime+Probe. Due to the deterministic behavior of the
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Fig. 3: A raw measurement trace over 4 000 000 cycles. The peaks in the pre-
processed trace on the bottom clearly indicate ‘1’s.

heap allocation, the address of the attacked buffer does not change on consecutive
exponentiations. Thus, we can collect multiple traces of the signature process.

To maintain a high sampling rate, we keep the post-processing during the
measurements to a minimum. Moreover, it is important to keep the memory
activity at a minimum to not introduce additional noise on the cache. Thus,
we only save the timestamps of the cache misses for further post-processing. As
a cache miss takes longer than a cache hit, the effective sampling rate varies
depending on the number of cache misses. We have to consider this effect in the
post-processing as it induces a non-constant sampling interval.

5 Recovering the Private Key

In this section, we describe the offline phase of our attack: recovering the private
key from the recorded traces of the victim enclave. This can either be done inside
the malware enclave or on the attacker’s server.

Ideally, an attacker would combine multiple traces by aligning them and aver-
aging out noise. From the averaged trace, the private key can be extracted more
easily. However, most noise sources, such as context switches, system activity
and varying CPU clock, alter the timing, thus making trace alignment difficult.
We pre-process all traces individually and extract a partial key out of each trace.
These partial keys likely suffer from random insertion and deletion errors as well
as from bit flips. To eliminate the errors, we combine multiple partial keys in
the key recovery phase. This approach has much lower computational overhead
than trace alignment since key recovery is performed on partial 4096-bit keys
instead of full traces containing several thousand measurements.

Key recovery comes in three steps. First, traces are pre-processed. Second,
a partial key is extracted from each trace. Third, the partial keys are merged
to recover the private key. In the pre-processing step we filter and resample raw
measurement data. Figure 3 shows a trace segment before (top) and after pre-
processing (bottom). The pre-processed trace shows high peaks at locations of
cache misses, indicating a ‘1’ in the RSA exponent.

To automatically extract a partial key from a pre-processed trace, we first
run a peak detection algorithm. We delete duplicate peaks, e.g., peaks where
the corresponding RSA multiplications would overlap in time. We also delete
peaks that are below a certain adaptive threshold, as they do not correspond to
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actual multiplications. Using an adaptive threshold is necessary since neither the
CPU frequency nor our timing source (the counting thread) is perfectly stable.
The varying peak height is shown in the right third of Figure 3. The adaptive
threshold is the median over the 10 previously detected peaks. If a peak drops
below 90 % of this threshold, it is discarded. The remaining peaks correspond
to the ‘1’s in the RSA exponent and are highlighted in Figure 3. ‘0’s can only
be observed indirectly in our trace as square operations do not trigger cache
activity on the monitored sets. ‘0’s appear as time gaps in the sequence of ‘1’
peaks, thus revealing all partial key bits. Note that since ‘0’s correspond to just
one multiplication, they are roughly twice as fast as ‘1’s.

When a correct peak is falsely discarded, the corresponding ‘1’ is interpreted
as two ‘0’s. Likewise, if noise is falsely interpreted as a ‘1’, this cancels out two
‘0’s. If either the attacker or the victim is not scheduled, we have a gap in the
collected trace. However, if both the attacker and the victim are descheduled,
this gap does not show up prominently in the trace since the counting thread is
also suspended by the interrupt. This is an advantage of a counting thread over
the use of the native timestamp counter.

In the final key recovery, we merge multiple partial keys to obtain the full
key. We quantify partial key errors using the edit distance. The edit distance
between a partial key and the correct key gives the number of bit insertions,
deletions and flips necessary to transform the partial key into the correct key.

The full key is recovered bitwise, starting from the most-significant bit. The
correct key bit is the result of the majority vote over the corresponding bit in
all partial keys. To correct the current bit of a wrong partial key, we compute
the edit distance to all partial keys that won the majority vote. To reduce the
performance overhead, we do not calculate the edit distance over the whole
partial keys but only over a lookahead window of a few bits. The output of the
edit distance algorithm is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit of the wrong
partial key matches the recovered key bit again.

6 Evaluation

In this section, we evaluate the presented methods by building a malware enclave
attacking a co-located enclave that acts as the victim. As discussed in Section 3.2,
we use mbedTLS , in version 2.3.0.

For the evaluation, we attack a 4096-bit RSA key. The runtime of the multi-
plication function increases exponentially with the size of the key. Hence, larger
keys improve the measurement resolution of the attacker. In terms of cache side-
channel attacks, large RSA keys do not provide higher security but degrade
side-channel resistance [41,48,51].

6.1 Native Environment

We use a Lenovo ThinkPad T460s with an Intel Core i5-6200U (2 cores, 12
cache ways) running Ubuntu 16.10 and the Intel SGX driver. Both the attacker
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Fig. 4: A high-level overview of the average times for each step of the attack.
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Fig. 5: The 9 cache sets that are used by a 4096-bit key and their error ratio
when recovering the key from a single trace.

enclave and the victim enclave are running on the same machine. We trigger the
signature process using the public API of the victim.

Figure 4 gives an overview of how long the individual steps of an average
attack take. The runtime of automatic cache set detection varies depending on
which cache sets are used by the victim. The attacked buffer spans 9 cache sets,
out of which 6 show a low bit-error ratio, as shown in Figure 5. For the attack
we select one of the 6 sets, as the other 3 suffer from too much noise. The noise
is mainly due to the buffer not being aligned to the cache set. Furthermore,
as already known from previous attacks, the hardware prefetcher can induce a
significant amount of noise [20,51].

Detecting one vulnerable cache set within all 2048 cache sets requires about
340 trials on average. With a monitoring time of 0.21 s per cache set, we require a
maximum of 72 s to eventually capture a trace from a vulnerable cache set. Thus,
based on our experiments, we estimate that cache set detection—if successful—
always takes less than 3 min.

One trace spans 220.47 million CPU cycles on average. Typically, ‘0’ and
‘1’ bits are uniformly distributed in the key. The estimated number of multi-
plications is therefore half the bit size of the key. Thus, the average multipli-
cation takes 107 662 cycles. As the Prime+Probe measurement takes on average
734 cycles, we do not have to slow down the victim additionally.

When looking at a single trace, we can already recover about 96 % of the RSA
private key, as shown in Figure 5. For a full key recovery we combine multiple
traces using our key recovery algorithm, as explained in Section 5. We first
determine a reasonable lookahead window size. Figure 6a shows the performance
of our key recovery algorithm for varying lookahead window sizes on 7 traces. For
lookahead windows smaller than 20, bit errors are pretty high. In that case, the
lookahead window is too small to account for all insertion and deletion errors,
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Fig. 6: Relation between number of traces, lookahead window size, number of bit
errors, and runtime.

causing relative shifts between the partial keys. The key recovery algorithm is
unable to align partial keys correctly and incurs many wrong “correction” steps,
increasing the overall runtime as compared to a window size of 20. While a
lookahead window size of 20 already shows a good performance, a window size
of 30 or more does not significantly reduce the bit errors. Therefore, we fixed
the lookahead window size to 20.

To remove the remaining bit errors and get full key recovery, we have to
combine more traces. Figure 6b shows how the number of traces affects the key
recovery performance. We can recover the full RSA private key without any bit
errors by combining only 11 traces within just 18.5 s. This results in a total
runtime of less than 130 s for the offline key recovery process.

Generalization. Based on our experiments we deduced that attacks are also
possible in a weaker scenario, where only the attacker is inside the enclave. On
most computers, applications handling cryptographic keys are not protected by
SGX enclaves. From the attacker’s perspective, attacking such an unprotected
application does not differ from attacking an enclave. We only rely on the last-
level cache, which is shared among all applications, whether they run inside an
enclave or not. We empirically verified that such attacks on the outside world
are possible and were again able to recover RSA private keys.

Table 2 summarizes our results. In contrast to concurrent work on cache
attacks on SGX [8,17,37], our attack is the only one that can be mounted from
unprivileged user space, and cannot be detected as it runs within an enclave.

Attack from
Attack on Benign Benign Benign

Userspace Kernel SGX Enclave
Malicious Userspace 3 [33, 39] 3 [22] 3 new
Malicious Kernel — — 3 new [8, 17,37]
Malicious SGX Enclave 3 new 3 new 3 new

Table 2: Our results show that cache attacks can be mounted successfully in the
shown scenarios.
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Fig. 7: Running the SGX enclaves inside Docker containers to provide further
isolation. The host provides both containers access to the same SGX driver.

6.2 Virtualized Environment

We now show that the attack also works in a virtualized environment. As de-
scribed in Section 2.1, no hypervisor with SGX support was available at the
time of our experiments. Instead of full virtualization using a virtual machine,
we used lightweight Docker containers, as used by large cloud providers, e.g.,
Amazon [13] or Microsoft Azure [36]. To enable SGX within a container, the
host operating system has to provide SGX support. The SGX driver is then
simply shared among all containers. Figure 7 shows our setup where the SGX
enclaves communicate directly with the SGX driver of the host operating sys-
tem. Applications running inside the container do not experience any difference
to running on a native system.

Considering the performance within Docker, only I/O operations and net-
work access have a measurable overhead [14]. Operations that only depend on
memory and CPU do not see any performance penalty, as these operations are
not virtualized. Thus, caches are also not affected by the container.

We were successfully able to attack a victim from within a Docker container
without any changes in the malware. We can even perform a cross-container
attack, i.e., both the malware and the victim are running inside different con-
tainers, without any changes. As expected, we require the same number of traces
for a full key recovery. Hence, containers do not provide additional protection
against our malware at all.

7 Countermeasures

Most existing countermeasures cannot be applied to a scenario where a malicious
enclave performs a cache attack and no assumptions about the operating system
are made. In this section, we discuss 3 categories of countermeasures, based on
where they ought to be implemented.

7.1 Source Level

A generic side-channel protection for cryptographic operations (e.g., RSA) is
exponent blinding [30]. It will prevent the proposed attack, but other parts of
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the signature process might still be vulnerable to an attack [45]. More generally
bit slicing can be applied to a wider range of algorithms to protect against timing
side channels [5, 47]

7.2 Operating System Level

Implementing countermeasures against malicious enclave attacks on the operat-
ing system level requires trusting the operating system. This would weaken the
trust model of SGX enclaves significantly, but in some threat models this can be
a viable solution. However, we want to discuss the different possibilities, in order
to provide valuable information for the design process of future enclave systems.

Detecting Malware. One of the core ideas of SGX is to remove the cloud
provider from the root of trust. If the enclave is encrypted and only decrypted
after successful remote attestation, the cloud provider has no way to access the
secret code inside the enclave. Also, heuristic methods, such as behavior-based
detection, are not applicable, as the malicious enclave does not rely on malicious
API calls or user interaction which could be monitored. However, eliminating
this core feature of SGX could mitigate malicious enclaves in practice, as the
enclave binary or source code could be read by the cloud provider and scanned
for malicious activities.

Herath and Fogh [21] proposed to use hardware performance counters to de-
tect cache attacks. Subsequently, several other approaches instrumenting perfor-
mance counters to detect cache attacks have been proposed [9,19,40]. However,
according to Intel, SGX enclave activity is not visible in the thread-specific per-
formance counters [26]. We verified that even performance counters for last-level
cache accesses are disabled for enclaves. The performance counter values are
three orders of magnitude below the values as compared to native code. There
are no cache hits and misses visible to the operating system or any application
(including the host application). This makes it impossible for current anti-virus
software and other detection mechanisms to detect malware inside the enclave.

Enclave Coloring. We propose enclave coloring as an effective counter-
measure against cross-enclave attacks. Enclave coloring is a software approach
to partition the cache into multiple smaller domains. Each domain spans over
multiple cache sets, and no cache set is included in more than one domain. An
enclave gets one or more cache domains assigned exclusively. The assignment of
domains is either done by the hardware or by the operating system. Trusting
the operating system contradicts one of the core ideas of SGX [10]. However,
if the operating system is trusted, this is an effective countermeasure against
cross-enclave cache attacks.

If implemented in software, the operating system can split the last-level cache
through memory allocation. The cache set index is determined by physical ad-
dress bits below bit 12 (the page offset) and bits > 12 which are not visible to the
enclave application and can thus be controlled by the operating system. We call
these upper bits a color. Whenever an enclave requests pages from the operat-
ing system (we consider the SGX driver as part of the operating system), it will
only get pages with a color that is not present in any other enclave. This coloring



Malware Guard Extension: Using SGX to Conceal Cache Attacks

ensures that two enclaves cannot have data in the same cache set, and therefore
a Prime+Probe attack is not possible across enclaves. However, attacks on the
operating system or other processes on the same host would still be possible.

To prevent attacks on the operating system or other processes, it would be
necessary to partition the rest of the memory as well, i.e., system-wide cache
coloring [43]. Godfrey et al. [16] evaluated a coloring method for hypervisors by
assigning every virtual machine a partition of the cache. They concluded that
this method is only feasible for a small number of partitions. As the number of
simultaneous enclaves is relatively limited by the available amount of SGX mem-
ory, enclave coloring can be applied to prevent cross-enclave attacks. Protecting
enclaves from malicious applications or preventing malware inside enclaves is
however not feasible using this method.

Heap Randomization. Our attack relies on the fact, that the used buffers
for the multiplication are always at the same memory location. This is the case,
as the used memory allocator (dlmalloc) has a deterministic best-fit strategy
for moderate buffer sizes as used in RSA. Freeing a buffer and allocating it again
will result in the same memory location for the re-allocated buffer.

We suggest randomizing the heap allocations for security relevant data such
as the used buffers. A randomization of the addresses and thus cache sets bears
two advantages. First, automatic cache set detection is not possible anymore, as
the identified set will change for every run of the algorithm. Second, if more than
one trace is required to reconstruct the key, heap randomization increases the
number of required traces by multiple orders of magnitude, as the probability to
measure the correct cache set by chance decreases.

Although not obvious at first glance, this method requires a certain amount
of trust in the operating system. A malicious operating system could assign only
pages mapping to certain cache sets to the enclave, similar to enclave coloring.
Thus, the randomization is limited to only a subset of cache sets, increasing the
probability for an attacker to measure the correct cache set.

Intel CAT. Recently, Intel introduced an instruction set extension called
CAT (cache allocation technology) [24]. With Intel CAT it is possible to restrict
CPU cores to one of the slices of the last-level cache and even to pin cache
lines. Liu et al. [32] proposed a system that uses CAT to protect general purpose
software and cryptographic algorithms. Their approach can be directly applied
to protect against a malicious enclave. However, this approach does not allow to
protect enclaves from an outside attacker.

7.3 Hardware Level

Combining Intel CAT with SGX. Instead of using Intel CAT on the operat-
ing system level it could also be used to protect enclaves on the hardware level.
By changing the eenter instruction in a way that it implicitly activates CAT
for this core, any cache sharing between SGX enclaves and the outside as well as
co-located enclaves could be eliminated. Thus, SGX enclaves would be protected
from outside attackers. Furthermore, it would protect co-located enclaves as well
as the operating system and user programs against malicious enclaves.
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Secure RAM. To fully mitigate cache- or DRAM-based side-channel attacks
memory must not be shared among processes. We propose an additional fast,
non-cachable secure memory element that resides inside the CPU.

The SGX driver can then provide an API to acquire the element for tem-
porarily storing sensitive data. A cryptographic library could use this memory
to execute code which depends on secret keys such as the square-and-multiply
algorithm. Providing such a secure memory element per CPU core would even
allow parallel execution of multiple enclaves.

Data from this element is only accessible by one program, thus cache attacks
and DRAM-based attacks are not possible anymore. Moreover, if this secure
memory is inside the CPU, it is infeasible for an attacker to mount physical
attacks. It is unclear whether the Intel eDRAM implementation can already be
instrumented as a secure memory to protect applications against cache attacks.

8 Conclusion

Intel claimed that SGX features impair side-channel attacks and recommends
using SGX enclaves to protect cryptographic computations. Intel also claimed
that enclaves cannot perform harmful operations.

In this paper, we demonstrated the first malware running in real SGX hard-
ware enclaves. We demonstrated cross-enclave private key theft in an automated
semi-synchronous end-to-end attack, despite all restrictions of SGX, e.g., no
timers, no large pages, no physical addresses, and no shared memory. We de-
veloped a timing measurement technique with the highest resolution currently
known for Intel CPUs, perfectly tailored to the hardware. We combined DRAM
and cache side channels, to build a novel approach that recovers physical address
bits without assumptions on the page size. We attack the RSA implementation of
mbedTLS , which uses constant-time multiplication primitives. We extract 96 %
of a 4096-bit RSA key from a single Prime+Probe trace and achieve full key
recovery from only 11 traces.

Besides not fully preventing malicious enclaves, SGX provides protection
features to conceal attack code. Even the most advanced detection mechanisms
using performance counters cannot detect our malware. This unavoidably pro-
vides attackers with the ability to hide attacks as it eliminates the only known
technique to detect cache side-channel attacks. We discussed multiple design
issues in SGX and proposed countermeasures for future SGX versions.
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ABSTRACT
Double-fetch bugs are a special type of race condition, where an
unprivileged execution thread is able to change a memory location
between the time-of-check and time-of-use of a privileged execution
thread. If an unprivileged attacker changes the value at the right
time, the privileged operation becomes inconsistent, leading to a
change in control flow, and thus an escalation of privileges for the
attacker. More severely, such double-fetch bugs can be introduced
by the compiler, entirely invisible on the source-code level.

We propose novel techniques to efficiently detect, exploit, and
eliminate double-fetch bugs. We demonstrate the first combination
of state-of-the-art cache attacks with kernel-fuzzing techniques to
allow fully automated identification of double fetches. We demon-
strate the first fully automated reliable detection and exploitation
of double-fetch bugs, making manual analysis as in previous work
superfluous. We show that cache-based triggers outperform state-
of-the-art exploitation techniques significantly, leading to an ex-
ploitation success rate of up to 97 %. Our modified fuzzer automati-
cally detects double fetches and automatically narrows down this
candidate set for double-fetch bugs to the exploitable ones. We
present the first generic technique based on hardware transactional
memory, to eliminate double-fetch bugs in a fully automated and
transparent manner. We extend defensive programming techniques
by retrofitting arbitrary code with automated double-fetch preven-
tion, both in trusted execution environments as well as in syscalls,
with a performance overhead below 1%.
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1 INTRODUCTION
The security of modern computer systems relies fundamentally on
the security of the operating system kernel, providing strong isola-
tion between processes. While kernels are increasingly hardened
against various types of memory corruption attacks, race condi-
tions are still a non-trivial problem. Syscalls are a common scenario
in which the trusted kernel space has to interact with the untrusted
user space, requiring sharing of memory locations between the two
environments. Among possible bugs in this scenario are time-of-
check-to-time-of-use bugs, where the kernel accesses a memory
location twice, first to check the validity of the data and second
to use it (double fetch) [65]. If such double fetches are exploitable,
they are considered double-fetch bugs. The untrusted user space
application can change the value between the two accesses and
thus corrupt kernel memory and consequently escalate privileges.
Double-fetch bugs can not only be introduced at the source-code
level but also by compilers, entirely invisible for the programmer
and any source-code-level analysis technique [5]. Recent research
has found a significant amount of double fetches in the kernel
through static analysis [70], and memory access tracing through
full CPU emulation [38]. Both works had to manually determine
for every double fetch, whether it is a double-fetch bug.

Double fetches have the property that the data is fetched twice
from memory. If the data is already in the cache (cache hit), the
data is fetched from the cache, if the data is not in the cache (cache
miss), it is fetched from main memory into the cache. Differences
between fetches from cache and memory are the basis for so-called
cache attacks, such as Flush+Reload [56, 77], which obtain secret
information by observing memory accesses [21]. Instead of exploit-
ing the cache side channel for obtaining secret information, we
utilize it to detect double fetches.

In this paper, we showhow to efficiently and automatically detect,
exploit, and eliminate double-fetch bugs, with two new approaches:
DECAF and DropIt.

DECAF is a double-fetch-exposing cache-guided augmentation
for fuzzers, which automatically detects and exploits real-world
double-fetch bugs in a two-phase process. In the profiling phase,
DECAF relies on cache side channel information to detect whenever
the kernel accesses a syscall parameter. Using this novel technique,
DECAF is able to detect whether a parameter is fetched multiple
times, generating a candidate set containing double fetches, i.e.,
some of which are potential double-fetch bugs. In the exploita-
tion phase, DECAF uses a cache-based trigger signal to flip val-
ues while fuzzing syscalls from the candidate set, to trigger actual
double-fetch bugs. In contrast to previous purely probability-based



approaches, cache-based trigger signals enable deterministic double-
fetch-bug exploitation. Our automated exploitation exceeds state-
of-the-art techniques, where checking the double-fetch candidate
set for actual double-fetch bugs is tedious manual work. We show
that DECAF can also be applied to trusted execution environments,
e.g., ARM TrustZone and Intel SGX.

DropIt is a protection mechanism to eliminate double-fetch bugs.
DropIt uses hardware transactional memory to efficiently drop
the current execution state in case of a concurrent modification.
Hence, double-fetch bugs are automatically reduced to ordinary
non-exploitable double fetches. In case user-controlled memory
locations are modified, DropIt continues the execution from the
last consistent state. Applying DropIt to syscalls induces no per-
formance overhead on arbitrary computations running in other
threads and only a negligible performance overhead of 0.8 % on
the process executing the protected syscall. We show that DropIt
can also be applied to trusted execution environments, e.g., ARM
TrustZone and Intel SGX.

Contributions.We make the following contributions:
(1) We are the first to combine state-of-the-art cache attacks

with kernel-fuzzing techniques to build DECAF, a generic
double-fetch-exposing cache-guided augmentation for fuzzers.

(2) Using DECAF, we are the first to show fully automated reli-
able detection and exploitation of double-fetch bugs, making
manual analysis as in previous work superfluous.

(3) We outperform state-of-the-art exploitation techniques sig-
nificantly, with an exploitation success rate of up to 97 %.

(4) We present DropIt, the first generic technique to eliminate
double-fetch bugs in a fully automated manner, facilitat-
ing newfound effects of hardware transactional memory
on double-fetch bugs. DropIt has a negligible performance
overhead of 0.8 % on protected syscalls.

(5) We show that DECAF can also fuzz trusted execution envi-
ronments in a fully automated manner. We observe strong
synergies between Intel SGX and DropIt, enabling efficient
preventative protection from double-fetch bugs.

Outline. The remainder of the paper is organized as follows. In
Section 2, we provide background on cache attacks, race conditions,
and kernel fuzzing. In Section 3, we discuss the building blocks for
finding and eliminating double-fetch bugs. We present the profiling
phase of DECAF in Section 4 and the exploitation phase of DECAF
in Section 5. In Section 6, we show how hardware transactional
memory can be used to eliminate all double-fetch bugs generically.
In Section 7 we discuss the results of we obtained by instantiating
DECAF. We conclude in Section 8.

2 BACKGROUND
2.1 Fuzzing
Fuzzing describes the process of testing applications with random-
ized input to find vulnerabilities.

The term “fuzzing” was coined 1988 by Miller [50], and later
on extended to an automated approach for testing the reliability
of several user-space programs on Linux [51], Windows [18] and
Mac OS [49]. There is an immense number of works exploring

user space fuzzing with different forms of feedback [12, 14, 19, 22–
25, 32, 39, 61, 67]. However, these are not applicable to this work, as
we focus on fuzzing the kernel and trusted execution environments.

Fuzzing is not limited to testing user-space applications, but it is
also, to amuch smaller extent, used to test the reliability of operating
systems. Regular user space fuzzers cannot be used here, but a
smaller number of tools have been developed to apply fuzzy testing
to operating system interfaces. Carrette [9] developed the tool
CrashMe that tests the robustness of operating systems by trying
to execute random data streams as instructions. Mendoncca et al.
[48] and Jodeit et al. [36] demonstrate that fuzzing drivers via the
hardware level is another possibility to attack an operating system.
Other operating system interfaces that can be fuzzed include the
file system [7] and the virtual machine interface [20, 46].

The syscall interface is a trust boundary between the trusted
kernel, running with the highest privileges, and the unprivileged
user space. Bugs in this interface can be exploited to escalate priv-
ileges. Koopman et al. [40] were among the first to test random
inputs to syscalls. Modern syscall fuzzers, such as Trinity [37] or
syzkaller [69], test most syscalls with semi-intelligent arguments
instead of totally random inputs. In contrast to these generic tools,
Weaver et al. [71] developed perf_fuzzer, which uses domain knowl-
edge to fuzz only the performance monitoring syscalls.

2.2 Flush+Reload
Flush+Reload is a side-channel attack exploiting the difference in
access times between CPU caches and main memory. Yarom and
Falkner [77] presented Flush+Reload as an improvement over the
cache attack by Gullasch et al. [31]. Flush+Reload relies on shared
memory between the attacker and the victim and works as follows:

(1) Establish a shared memory region with the victim (e.g., by
mapping the victim binary into the address space).

(2) Flush one line of the shared memory from the cache.
(3) Schedule the victim process.
(4) Measure the access time to the flushed cache line.

If the victim accesses the cache linewhile being scheduled, it is again
cached. When measuring the access time, the attacker can distin-
guish whether the data is cached or not and thus infer whether the
victim accessed it. As Flush+Reload works on cache line granularity
(usually 64 B), fine-grained attacks are possible. The probability of
false positives is very low with Flush+Reload, as cache hits cannot
be caused by different programs and prefetching can be avoided.
Gruss et al. [28] reported extraordinarily high accuracies, above
99 %, for the Flush+Reload side channel, making it a viable choice
for a wide range of applications.

2.3 Double Fetches and Double-Fetch Bugs
In a scenario where shared memory is accessed multiple times, the
CPU may fetch it multiple times into a register. This is commonly
known as a double fetch. Double fetches occur when the kernel
accesses data provided by the user multiple times, which is often
unavoidable. If proper checks are done, ensuring that a change in
the data during the fetches is correctly handled, double fetches are
non-exploitable valid constructs.

A double-fetch bug is a time-of-check-to-time-of-use race con-
dition, which is exploitable by changing the data in the shared

2



memory between two accesses. Double-fetch bugs are a subset of
double fetches. A double fetch is a double-fetch bug, if and only if
it can be exploited by concurrent modification of the data. For ex-
ample, if a syscall expects a string and first checks the length of the
string before copying it to the kernel, an attacker could change the
string to a longer string after the check, causing a buffer overflow
in the kernel. This can lead to code execution within the kernel.

Wang et al. [70] used Coccinelle, a transformation and matching
engine for C code, to find double fetches. With this static pattern-
based approach, they identified 90 double fetches inside the Linux
kernel. However, their work incurred several days of manual analy-
sis of these 90 double fetches, identifying only 3 exploitable double-
fetch bugs. A further limitation of their work is that double-fetch
bugs not matching the implemented patterns, cannot be detected.
Xu et al. [75] used static code analysis in combination with symbolic
checking to identify 23 new bugs in Linux. Again, double-fetch bugs
not matching their formal definition are not identified.

Not all double fetches, and thus not all double-fetch bugs, can
be found using static code analysis. Blanchou [5] demonstrated
that especially in lock-free code, compilers can introduce double
fetches that are not present in the code. Even worse, these compiler-
introduced double fetches can become double-fetch bugs in certain
scenarios (e.g., CVE-2015-8550). Jurczyk et al. [38] presented a dy-
namic approach for finding double fetches. They used a full CPU
emulator to run Windows and log all memory accesses. Note that
this requires significant computation and storage resources, as just
booting Windows already consumes 15 hours of time, resulting in
a log file of more than 100GB [38]. In the memory access log, they
searched for a distinctive double-fetch pattern, e.g., two reads of
the same user-space address within a short time frame. They iden-
tified 89 double fetches in Windows 7 and Windows 8. However,
their work also required manual analysis, in which they found that
only 2 out of around 100 unique double fetches were exploitable
double-fetch bugs. Again, if a double-fetch bug does not match
the implemented double-fetch pattern, it is not detected. In sum-
mary, we find that all techniques for double-fetch bug detection are
probabilistic and hence incomplete.

2.3.1 Race Condition Detection. Besides research on double
fetches and double-fetch bugs, there has been a significant amount
of research on race condition detection in general. Static analysis of
source code and dynamic runtime analysis have been used to find
data race conditions in multithreaded applications. Savage et al.
[62] described the Lockset algorithm. Their tool, Eraser, dynami-
cally detects race conditions in multithreaded programs. Poznian-
sky et al. [59, 60] extended their work to detect race conditions in
multithreaded C++ programs on-the-fly. Yu et al. [79] described
RaceTrack, an adaptive detection algorithm that reports suspicious
activity patterns. These algorithms have been improved and made
more efficient by using more lightweight data structures [17] or
combining various approaches [74].

While these tools can be applied to user space programs, they
are not designed to detect race conditions in the kernel space. Er-
ickson et al. [15] utilized breakpoints and watchpoints on memory
accesses to detect data races in the Windows kernel. With Race-
Hound [54], the same idea has been implemented for the Linux

kernel. The SLAM [3] project uses symbolic model checking, pro-
gram analysis, and theorem proving, to verify whether a driver
correctly interacts with the operating system. Schwarz et al. [63]
utilized software model checking to detect security violations in a
Linux distribution.

More closely related to double-fetch bugs, other time-of-check-
to-time-of-use bugs exist. By changing the content of a memory
location that is passed to the operating system, the content of a file
could be altered after a validity check [4, 8, 72]. Especially time-of-
check-to-time-of-use bugs in the file system are well-studied, and
several solutions have been proposed [13, 42, 57, 58, 68].

2.4 Hardware Transactional Memory
Hardware transactional memory is designed for optimizing syn-
chronization primitives [16, 78]. Any changes performed inside a
transaction are not visible to the outside before the transaction suc-
ceeds. The processor speculatively lets a thread perform a sequence
of operations inside a transaction. Unless there is a conflict due to
a concurrent modification of a data value, the transaction succeeds.
However, if a conflict occurs before the transaction is completed
(e.g., a concurrent write access), the transaction aborts. In this case,
all changes that have been performed in the transaction are dis-
carded, and the previous state is recovered. These fundamental
properties of hardware transactional memory imply that once a
value is read in a transaction, the value cannot be changed from
outside the transaction anymore for the time of the transaction.

Intel TSX is a hardware transactional memory implementation
with cache line granularity. It is available on several CPUs starting
with the Haswell microarchitecture. Intel TSX maintains a read set
which is limited to the size of the L3 cache and a write set limited to
the size of the L1 cache [26, 35, 45, 80]. A cache line is automatically
added to the read set when it is read inside a transaction, and it is
automatically added to the write set when it is modified inside a
transaction. Modifications to any memory in the read set or write
set from other threads cause the transaction to abort.

Previous work has investigated whether hardware transactional
memory can be instrumented for security features. Guan et al. [30]
proposed to protect cryptographic keys by only decrypting them
within TSX transactions. As the keys are never written to DRAM
in an unencrypted form, they cannot be read from memory even
by a physical attacker probing the DRAM bus. Kuvaiskii et al. [41]
proposed to use TSX to detect hardware faults and roll-back the
system state in case a fault occurred. Shih et al. [66] proposed to
exploit the fact that TSX transactions abort if a page fault occurred
for a memory access to prevent controlled-channel attacks [76] in
cloud scenarios. Chen et al. [10] implemented a counting thread pro-
tected by TSX to detect controlled-channel attacks in SGX enclaves.
Gruss et al. [29] demonstrated that TSX can be used to protect
against cache side-channel attacks in the cloud.

Shih et al. [66] and Gruss et al. [29] observed that Intel TSX has
several practical limitations. One observation is that executed code
is not considered transactional memory, i.e., virtually unlimited
amount of code can be executed in a transaction. To evade the
limitations caused by the L1 and L3 cache sizes, Shih et al. [66] and
Gruss et al. [29] split transactions that might be memory-intense
into multiple smaller transactions.
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Figure 1: An overview of the framework. Detecting (Primi-
tive 𝒫1) and exploiting (Primitive 𝒫2) double fetches runs
in parallel to the syscall fuzzer. Reported double-fetch bugs
can be eliminated (Primitive𝒫3) after the fuzzing process.

3 BUILDING BLOCKS TO DETECT, EXPLOIT,
AND ELIMINATE DOUBLE-FETCH BUGS

In this section, we present building blocks for detecting double
fetches, exploiting double-fetch bugs, and eliminating double-fetch
bugs. These building blocks are the base for DECAF and DropIt.

We identified three primitives, illustrated in Figure 1, for which
we propose novel techniques in this paper:
𝒫1: Detecting double fetches via the Flush+Reload side channel.
𝒫2: Distinguishing (exploitable) double-fetch bugs from (non-

exploitable) double fetches by validating their exploitability
by automatically exploiting double-fetch bugs.

𝒫3: Eliminating (exploitable) double-fetch bugs by using hard-
ware transactional memory.

In Section 4, we propose a novel, fully automated technique to
detect double fetches (𝒫1) using a multi-threaded Flush+Reload
cache side-channel attack. Our technique complements other work
on double-fetch bug detection [38, 70] as it covers scenarios which
lead to false positives and false negatives in other detection meth-
ods. Although relying on a side channel may seem unusual, this
approach has certain advantages over state-of-the-art techniques,
such as memory access tracing [38] or static code analysis [70]. We
do not need any model of what constitutes a double fetch in terms
of memory access traces or static code patterns. Hence, we can
detect any double fetch regardless of any double fetch model.

Wang et al. [70] identified as limitations of their initial approach
that false positives occur if a pointer is changed between two fetches
and memory accesses, in fact, go to different locations or if user-
space fetches occur in loops. Furthermore, false negatives occur
if multiple pointers point to the same memory location (pointer
aliasing) or if memory is addressed through different types (type
conversion), or if an element is fetched separately from the cor-
responding pointer and memory. With a refined approach, they
reduced the false positive rate from more than 98% to only 94%,
i.e., 6 % of the detected situations turned out to be actual double-
fetch bugs in the manual analysis. Wang et al. [70] reported that it
took an expert “only a few days” to analyze them. In contrast, our
Flush+Reload-based approach is oblivious to language-level struc-
tures. The Flush+Reload-trigger only depends on actual accesses to
the same memory location, irrespective of any programming con-
structs. Hence, we inherently bypass the problems of the approach
of Wang et al. [70] by design.

Our technique does not replace existing tools, which are either
slow [38] or limited by static code analysis [70] and require manual
analysis. Instead, we complement previous approaches by utilizing
a side channel, allowing fully automatic detection of double-fetch
bugs, including those that previous approaches may miss.

In Section 5, we propose a novel technique to automatically
determine whether a double fetch found using𝒫1 is an (exploitable)
double-fetch bug (𝒫2). State-of-the-art techniques are only capable
of automatically detecting double fetches using either dynamic [38]
or static [70] code analysis, but cannot determine whether a found
double fetch is an exploitable double-fetch bug. The double fetches
found using these techniques still require manual analysis to check
whether they are valid constructs or exploitable double-fetch bugs.
We close this gap by automatically testing whether double fetches
are exploitable double-fetch bugs (𝒫2), eliminating the need for
manual analysis. Again, this technique relies on a cache side channel
to trigger a change of the double-fetched value between the two
fetches (𝒫2). This is not possible with previous techniques [38, 70].

As the first automated technique, we present DECAF, a double-
fetch-exposing cache-guided augmentation for fuzzers, leveraging
𝒫1 and𝒫2 in parallel to regular fuzzing. This allows us to automati-
cally detect double fetches in the kernel and to automatically narrow
them down to the exploitable double-fetch bugs (cf. Section 5), as
opposed to previous techniques [38, 70] which incurred several days
of manual analysis work by an expert to distinguish double-fetch
bugs from double fetches. Similar to previous approaches [38, 70],
which inherently could not detect all double-fetch bugs in the ana-
lyzed code base, our approach is also probabilistic and might not
detect all double-fetch bugs. However, due to their different under-
lying techniques, the previous approaches and ours complement
each other.

In Section 6, we present a novel method to simplify the elimi-
nation of detected double-fetch bugs (𝒫3). We observe previously
unknown interactions between double-fetch bugs and hardware
transactional memory. Utilizing these effects, 𝒫3 can protect code
without requiring to identify the actual cause of a double-fetch bug.
Moreover, 𝒫3 can even be applied as a preventative measure to
protect critical code.

As a practical implementation of 𝒫3, we built DropIt, an open-
source 1 instantiation of 𝒫3 based on Intel TSX. We implemented
DropIt as a library, which eliminates double-fetch bugs with as
few as 3 additional lines of code. We show that DropIt has the
same effect as rewriting the code to eliminate the double fetch.
Furthermore, DropIt can automatically and transparently eliminate
double-fetch bugs in trusted execution environments such as Intel
SGX, in both desktop and cloud environments.

4 DETECTING DOUBLE FETCHES
We propose a novel dynamic approach to detect double fetches
based on their cache access pattern (𝒫1, cf. Section 3). The main
idea is to monitor the cache access pattern of syscall arguments
of a certain type, i.e., pointers or structures containing pointers.
These pointers may be accessed multiple times by the kernel and,
hence, a second thread can change the content. Other arguments

1The source can be found at https://www.github.com/IAIK/libdropit.
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Figure 2: Flush+Reload timing trace for a syscall with a dou-
ble fetch. The two downward peaks show when the kernel
accessed the argument.

that are statically copied or passed by value, and consequently are
not accessed multiple times, cannot lead to double fetches.

To monitor access to potentially vulnerable function arguments,
we mount a Flush+Reload attack on each argument in dedicated
monitoring threads. A monitoring thread continuously flushes and
reloads the memory location referenced by the function argument.
As soon as the kernel accesses the function argument, the data is
loaded into the cache. In this case, the Flush+Reload attack in the
corresponding monitoring thread reports a cache hit.

Figure 2 shows a trace generated by a monitoring thread. The
trace contains the access time in cycles for the memory location
referenced by the function argument. If the memory is accessed
twice, i.e., a double fetch, we can see a second cache hit, as shown
in Figure 2. This provides us with primitive𝒫1.

4.1 Classification of Multiple Cache Hits
Multiple cache hits within one trace usually correspond to multiple
fetches. However, there are rare cases where this is not the case.
To entirely eliminate spurious cache hits from prefetching, we
simply disabled the prefetcher in software through MSR 0x1A4 and
allocated memory on different pages to avoid spatial prefetching.
Note that this does not have any effect on the overall system stability
and only a small performance impact. We want to discuss two other
factors influencing the cache access pattern in more detail.

Size of data type. Depending on the size of the data type, there are
differences in the cache access pattern. If the data fills exactly one
cache line, accesses to the cache line are clearly seen in the cache
access pattern. There are no false positives due to unrelated data in
the same cache set, and every access to the referenced memory is
visible in the cache access pattern.

To avoid false positives if the data size is smaller than a cache line
(i.e., 64 B), we allocate memory chunks with a multiple of the page
size, ensuring that dynamically allocated memory never shares
one cache line. Hence, accesses to unrelated data (i.e., separate
allocations) do not introduce any false positives, as they are never
stored in the same cache line. Thus, false positives are only detected
if the cache line contains either multiple parameters, local variables
or other members of the same structure.

Parameter reuse. With call-by-reference, one parameter of a func-
tion can be used both as input and output, e.g., in functions working
in-place on a given buffer. Using Flush+Reload, we cannot distin-
guish whether a cache hit is due to a read of or write to the memory.
Thus, we can only observe multiple cache hits without knowing

whether they are both caused by a memory read access or by other
activity on the same cache line.

4.2 Probability of Detecting a Double Fetch
The actual detection rate of a double fetch depends on the time
between two accesses. Each Flush+Reload cycle consists of flushing
the memory from the cache and measuring the access time to this
memory location afterwards. Such a cycle takes on average 298
cycles on an Intel i7-6700K. Thus, to detect a double fetch, the time
between the two memory accesses has to be at least two Flush+
Reload cycles, i.e., 596 CPU cycles.

We obtain the exact same results when testing a double fetch in
kernel space as in user space. Also, due to the high noise-resistance
of Flush+Reload (cf. Section 2), interrupts, context switches, and
other system activity have an entirely negligible effect on the result.
With the minimum distance of 596 CPU cycles, we can already de-
tect double fetches if the scheduling is optimal for both applications.
The further the memory fetches are apart, the higher the proba-
bility of detecting the double fetch. The probability of detecting
double fetches increases monotonically with the time between the
fetches, making it quite immune to interrupts such as scheduling.
If the double fetches are at least 3000 CPU cycles apart, we almost
always detect such a double fetch. In the real-world double-fetch
bugs we examined, the double fetches were always significantly
more than 3000 CPU cycles apart. Figure 9 (Appendix A) shows the
relation between the detection probability and the time between
the memory accesses, empirically determined on an Intel i7-6700K.

On a Raspberry Pi 3 with an ARMv8 1.2 GHz Broadcom BCM2837
CPU, a Flush+Reload cycle takes 250 cycles on average. Hence, the
double fetches must be at least 500 cycles apart to be detectable
with a high probability.

4.3 Automatically Finding Affected Syscalls
Using our primitive 𝒫1, we can already automatically and reli-
ably detect whether a double fetch occurs for a particular function
parameter. This is the first building block of DECAF. DECAF is
a two-phase process, consisting of a profiling phase which finds
double fetches and an exploitation phase narrowing down the set
of double fetches to only double-fetch bugs. We will now discuss
how DECAF augments existing fuzzers to discover double fetches
within operating system kernels fully automatically.

To test a wide range of syscalls and their parameters, we instan-
tiate DECAF with existing syscall fuzzers. For Linux, we retrofitted
the well-known syscall fuzzer Trinity with our primitive𝒫1. For
Windows, we extended the basic NtCall64 fuzzer to support semi-
intelligent parameter selection similar to Trinity. Subsequently, we
retrofitted our extended NtCall64 fuzzer with our primitive𝒫1 as
well. Thereby, we demonstrate that DECAF is a generic technique
and does not depend on a specific fuzzer or operating system.

Our augmented and extended NtCall64 fuzzer, NtCall64DECAF
works for double fetches and double-fetch bugs in proof-of-concept
drivers. However, due to the severely limited coverage of the Nt-
Call64 fuzzer, we did not include it in our evaluations. Instead, we
focus on Linux only and leave retrofitting a good Windows syscall
fuzzer with DECAF for future work.

5



In the profiling phase of DECAF, the augmented syscall fuzzer
chooses a random syscall to test. The semi-intelligent parameter
selection of the syscall fuzzer ensures that the syscall parameters
are valid parameters in most cases. Hence, the syscall is executed
and does not abort in the initial sanity checks.

Every syscall parameter that is either a pointer, a file or directory
name, or an allocated buffer, can be monitored for double fetches.
As Trinity already knows the data types of all syscall parameters,
we can easily extend the main fuzzing routine. After Trinity selects
a syscall to fuzz, it chooses the arguments to test with and starts
a new process. Within this process, we spawn a Flush+Reload
monitoring thread for every parameter that may potentially contain
a double-fetch bug. The monitoring threads continuously flush the
corresponding syscall parameter and measure the reload time. As
soon as the parameter is accessed from kernel code, the monitoring
thread measures a low access time. The threads report the number
of detected accesses to the referenced memory after the syscall has
been executed. These findings are logged, and simultaneously, all
syscalls with double fetches are added to a candidate set for the
interleaved exploitation phase. In Section 5, we additionally show
how the second building block 𝒫2, allows to automatically test
whether such a double fetch is exploitable. Figure 8 (Appendix A)
shows the process structure of our augmented version of Trinity,
called TrinityDECAF.

4.4 Double-Fetch Detection for Black Boxes
The Flush+Reload-based detection method (𝒫1) is not limited to
double fetches in operating system kernels. In general, we can apply
the technique for all black boxes fulfilling the following criteria:

(1) Memory references can be passed to the black box.
(2) The referenced memory is (temporarily) shared between the

black box and the host.
(3) It is possible to run code in parallel to the execution of the

black box.
This generalization does not only apply to syscalls, but it also

applies to trusted execution environments.
Trusted execution environments are particularly interesting tar-

gets for double fetch detection and double-fetch-bug exploitation.
Trusted execution environments isolate programs from other user
programs and the operating system kernel. These programs are
often neither open source nor is the unencrypted binary available
to the user. Thus, if the vendor did not test for double-fetch bugs,
researchers not affiliated with the vendor have no possibility to
scan for these vulnerabilities. Moreover, even the vendor might not
be able to apply traditional double-fetch detection techniques, such
as dynamic program analysis, if these tools are not available within
the trusted execution environment.

Both Intel SGX [47] and ARM TrustZone [1] commonly share
memory buffers between the host application and the trustlet run-
ning inside the trusted execution environment through their inter-
faces. Therefore, we can again utilize a Flush+Reload monitoring
thread to detect double fetches by the trusted application (𝒫1).

5 EXPLOITING DOUBLE-FETCH BUGS
In this section, we detail the second building block of DECAF,
primitive𝒫2, the base of the DECAF exploitation phase. It allows
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Figure 3: The probability of successfully exploiting a double-
fetch bug depending on the time between the accesses.

us to exploit any double fetch found via 𝒫1 (cf. Section 4) reliably
and automatically. In contrast to state-of-the-art value flipping [38]
(success probability 50 % or significantly lower), our exploitation
phase has a success probability of 97 %. The success probability of
value flipping is almost zero if multiple sanity checks are performed,
whereas the success probability of𝒫2 decreases only slightly.

5.1 Flush+Reload as a Trigger Signal
We propose to use Flush+Reload as a trigger signal to deterministi-
cally and reliably exploit double-fetch bugs. Indeed, Flush+Reload
is a reliable approach to detect access to the memory, allowing us
to flip the value immediately after an access. This combination of a
trigger signal and targeted value flipping forms primitive𝒫2.

The idea of the double-fetch-bug exploitation (𝒫2) is therefore
similar to the double-fetch detection (𝒫1). As soon as one access to
a parameter is detected, the value of the parameter is flipped to an
invalid value. Just as the double-fetch detection (cf. Section 4), we
can use a double-fetch trigger signal for every black box which uses
memory references as parameters in the communication interface.

As shown in Figure 3, the exploitation phase can target double-
fetch bugs with an even lower time delta between the accesses, than
the double-fetch detection in the profiling phase (cf. Section 4). The
reason is that only the first access has to be detected and chang-
ing the value is significantly faster than a full Flush+Reload cycle.
Thus, it is even possible to exploit double fetches where the time
between them is already too short to detect them. Consequently,
every double fetch detected in the profiling phase can clearly be
tested for exploitability using𝒫2 in the exploitation phase.

As a fast alternative to Flush+Reload, Flush+Flush [28] could
be used. Although Flush+Flush is significantly faster than Flush+
Reload, Flush+Reload is usually the better choice as it has less noise.

5.2 Automated Syscall Exploitation
With the primitive𝒫2 from Section 5.1, we add the second build-
ing block to DECAF, to not only detect double fetches but also to
immediately exploit them. This has the advantage that exploitable
double-fetch bugs can be found without human interaction, as the
automated exploitation leads to evident errors and system crashes.
As described in Section 4, DECAF does not only report the double
fetches but also adds them to a candidate set for double-fetch bug
testing. If a candidate is added to this set, the double-fetch bug test
(𝒫2) is immediately interleaved into the regular fuzzing process.

We randomly switch between four different methods to change
the value: setting it to zero, flipping the least significant bit, incre-
menting the value, and replacing it by a random value. Setting a
value to zero or a random value is useful to change pointers to
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invalid locations. Furthermore, it is also effective on string buffers
as it can shorten the string, extend the string, or introduce invalid
characters. Incrementing a value or flipping the least significant bit
is especially useful if the referenced memory contains integers, as
it might trigger off-by-one errors.

In summary, in the exploitation phase of DECAF, we reduce the
double-fetch candidate set (obtained via 𝒫1) to exploitable double-
fetch bugs without any human interaction (𝒫2), complementing
state-of-the-art techniques [38, 70]. The coverage of DECAF highly
depends on the fuzzer used. Fuzzing is probabilistic and might not
find every exploitable double fetch, but with growing coverage of
fuzzers, the coverage of DECAF will automatically grow as well.

6 ELIMINATING DOUBLE-FETCH BUGS
In this section, we propose the first transparent and automated
technique to entirely eliminate double-fetch bugs (𝒫3). We utilize
previously unknown interactions between double-fetch bugs and
hardware transactional memory. 𝒫3 protects code without requir-
ing to identify the actual cause of a double-fetch bug and can even
be applied as a preventative measure to protect critical code.

We present the DropIt library, an instantiation of 𝒫3 with Intel
TSX. DropIt eliminates double-fetch bugs, having the same effect
as rewriting the code to eliminate the double fetch. We also show
its application to Intel SGX, a trusted execution environment that
is particularly interesting in cloud scenarios.

6.1 Problems of State-of-the-Art Double-Fetch
Elimination

Introducing double-fetch bugs in software happens easily, and they
often stay undetected for many years. As shown recently, modern
operating systems still contain a vast number of double fetches,
some of which are exploitable double-fetch bugs [38, 70]. As shown
in Section 4 and Section 5, identifying double-fetch bugs requires
full code coverage, and before our work, a manual inspection of the
detected double fetches. Evenwhen double-fetch bugs are identified,
they are usually not trivial to fix.

A simple example of a double-fetch bug is a syscall with a string
argument of arbitrary length. The kernel requires two accesses to
copy the string, first to retrieve the length of the string and allocate
enough memory, and second, to copy the string to the kernel.

Writing this in a naïve way can lead to severe problems, such as
unterminated strings of kernel buffer overflows. One approach is to
use a retry logic, as shown in Algorithm 1 (Appendix B), as it used
in the Linux kernel whenever user data of unknown length has to
be copied to the kernel. Such methods increase the complexity and
runtime of code, and they are hard to wrap into generic functions.

Finally, compilers can also introduce double fetches that are
neither visible in the source code nor easily detectable, as they are
usually within just a few cycles [5].

6.2 Generic Double-Fetch Bug Elimination
Eliminating double-fetch bugs is not equivalent to eliminating dou-
ble fetches. Double fetches are valid constructs, as long as a change
of the value is successfully detected, or it is not possible to change
the value between two memory accesses. Thus, making a series of
multiple fetches atomic is sufficient to eliminate double-fetch bugs,

as there is only one operation from an attacker’s view (see Sec-
tion 2.4). Curiously, the concept of hardware transactional memory
provides exactly this atomicity.

As also described in Section 2.4, transactional memory provides
atomicity, consistency, and isolation [33]. Hence, by wrapping code
possibly containing a double fetch within a hardware transaction,
we can benefit from these properties. From the view of a different
thread, the code is one atomic memory operation. If an attacker
changes the referenced memory while the transaction is active, the
transaction aborts and can be retried. As the retry logic is imple-
mented in hardware and not simulated by software, the induced
overhead is minimal, and the amount of code is drastically reduced.

In a nutshell, hardware transactional memory can be instru-
mented as a hardware implementation of software-based retry
solutions discussed in Section 6.1. Thus, wrapping a double-fetch
bug in a hardware transaction does not hide, but actually eliminates
the bug (𝒫3). Similar to the software-based solution, our generic
double-fetch bug elimination can be automatically applied in many
scenarios, such as the interface between trust domains (e.g., ECALL
in SGX). Naturally, solving a problem with hardware support is
more efficient, and less error-prone, than a pure software solution.

In contrast to software-based retry solutions, our hardware-
assisted solution (𝒫3) does not require any identification of the
resource to be protected. For this reason, we can even prevent unde-
tectable or yet undetected double-fetch bugs, regardless of whether
they are introduced on the source level or by the compiler. As these
interfaces are clearly defined, the double-fetch bug elimination can
be applied in a transparent and fully automated manner.

6.3 Implementation of DropIt
To build DropIt, our instantiation of 𝒫3, we had to rely on real-
world hardware transactional memory, namely Intel TSX. Intel
TSX comes with a series of imperfections, inevitably introducing
practical limitations for security mechanisms, as observed in previ-
ous work [29] (cf. Section 2.4). However, as hardware transactional
memory is exactly purposed to make multiple fetches frommemory
consistent, Intel TSX is sufficient for most real-world scenarios.

To eliminate double-fetch bugs, DropIt relies on the XBEGIN and
XEND instructions of Intel TSX. XBEGIN specifies the start of a trans-
action as well as a fall-back path that is executed if the transaction
aborts. XEND marks the successful completion of a transaction.

We find that on a typical Ubuntu Linux the kernel usually occu-
pies less than 32MB including all code, data, and heap used by the
kernel and kernel modules. With an 8MB L3 cache we could thus
read or execute more than 20 % of the kernel without causing high
abort rates [29] (cf. Section 2.4). In Section 7.4, we show that for
practical use cases the abort rates are almost 0 % and our approach
even improves the system call performance in several cases.

DropIt abstracts the transactional memory as well as the retry
logic from the programmer. Hence, in contrast to existing software-
based retry logic (cf. Section 6.1), e.g., in the Linux kernel, DropIt
is mostly transparent to the programmer. To protect code, DropIt
takes the number of automatic retries as a parameter as well as a fall-
back function for the case that the transaction is never successful,
i.e., for the case of an ongoing attack. Hence, a programmer only
has to add 3 lines of code to protect arbitrary code from double
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fetch exploitation. Listing 2 (Appendix E) shows an example how
to protect the insecure strcpy function using DropIt. The solution
with DropIt is clearly simpler than current state-of-the-art software-
based retry logic (cf. Algorithm 1). Finally, replacing software-based
retry logic by our hardware-assisted DropIt library can also improve
the execution time of protected syscalls.

DropIt is implemented in standard C and does not have any
dependencies. It can be used in user space, kernel space, and in
trusted environments such as Intel SGX enclaves. If TSX is not
available, DropIt immediately executes the fall-back function. This
ensures that syscalls still work on older systems, while modern
systems additionally benefit from possibly increased performance
and elimination of yet unknown double-fetch bugs.

DropIt can be used for any code containing multiple fetches,
regardless of whether they have been introduced on a source-code
level or by the compiler. In case there is a particularly critical section
in which a double fetch can cause harm, we can automatically
protect it using DropIt. For example, this is possible for parts of
syscalls that interact with the user space. As these parts are known
to a compiler, a compiler can simply add the DropIt functions there.

DropIt is able to eliminate double-fetch bugs in most real-world
scenarios. As Intel TSX is not an ideal implementation of hardware
transactional memory, use of certain instructions in transactions
is restricted, such as port I/O instructions [34]. However, double
fetches are typically caused by string handling functions and do
not rely on any restricted instructions. Especially in a trusted en-
vironment, such as Intel SGX enclaves, where I/O operations are
not supported, all functions interacting with the host application
can be automatically protected using DropIt. This is a particularly
useful protection against an attacker in a cloud scenario, where an
enclave containing an unknown double-fetch bug may be exposed
to an attacker over an extended period of time.

7 EVALUATION
The evaluation consists of four parts. The first part evaluates DECAF
(𝒫1 and 𝒫2), the second part compares 𝒫2 to state-of-the-art
exploitation techniques, the third part evaluates 𝒫1 on trusted
execution environments, and the fourth part evaluates DropIt (𝒫3).

First, we demonstrate the proposed detection method using
Flush+Reload. We evaluate the double-fetch detection of Trini-
tyDECAF on both a recent Linux kernel 4.10 and an older Linux
kernel 4.6 on Ubuntu 16.10 and discuss the results. We also evaluate
the reliability of using Flush+Reload as a trigger in TrinityDECAF
to exploit double-fetch bugs (𝒫2). On Linux 4.6, we show that
TrinityDECAF successfully finds and exploits CVE-2016-6516.

Second, we compare our double-fetch bug exploitation technique
(𝒫2) to state-of-the-art exploitation techniques. We show that 𝒫2
outperforms value-flipping as well as a highly optimized exploit
crafted explicitly for one double-fetch bug. This underlines that𝒫2
is both generic and extends the state of the art significantly.

Third, we evaluate the double-fetch detection (𝒫1) on trusted
execution environments, i.e., Intel SGX and ARM TrustZone. We
show that despite the isolation of those environments, we can still
use our techniques to detect double fetches.

Fourth, we demonstrate the effectiveness of DropIt, our double-
fetch bug elimination method (𝒫3). We show that DropIt eliminates

1 1.2 1.4 1.6 1.8 2

·105

100

200

300

Runtime [cycles]

A
cc
es
s
tim

e
[c
yc
le
s]

Figure 4: The two memory accesses of the FIDEDUPERANGE
ioctl in Linux kernel 4.5 to 4.7 can be clearly seen at around
1.5 · 105 and 1.6 · 105 cycles.

source-code-level double-fetch bugs with a very low overhead. Fur-
thermore, we reproduce CVE-2015-8550, a compiler-introduced
double-fetch bug. Based on this example we demonstrate that
DropIt also eliminates double-fetch bugs which are not even visible
in the source code. Finally, we measure the performance of DropIt
protecting 26 syscalls in the Linux kernel, where TrinityDECAF
reported double fetches.

7.1 Evaluation of DECAF
To evaluate DECAF, we analyze the double fetches and double-fetch
bugs reported by TrinityDECAF. Our goal here is not to fuzz an ex-
cessive amount of time, but to demonstrate that DECAF constitutes
a sensible and practical complement to existing techniques. Hence,
we also used old and stable kernels where we did not expect to find
new bugs, but validate our approach.

Reported Double-Fetch Bugs. Besides many double fetches Trini-
tyDECAF reports in Linux kernel 4.6, it identifies one double-fetch
bug which is already documented as CVE-2016-6516. It is a double-
fetch bug in one of the ioctl calls. The syscall is used to share
physical sections of two files if the content is identical.

When calling the syscall, the user provides a file descriptor for
the source file as well as a starting offset and length within the
source file. Furthermore, the syscall takes an arbitrary number of
destination file descriptors with corresponding offsets and lengths.
The kernel checks whether the given destination sections are iden-
tical to the source section and if this is the case, frees the sections
and maps the source section into the destination file.

As the function allows for an arbitrary number of destination
files, the user has to supply the number of provided destination files.
This number is used to determine the amount of memory required
to allocate. Listing 1 (Appendix C) shows the corresponding code
from the Linux kernel. Changing the number between the allocation
and the actual access to the data structure leads to a kernel heap-
buffer overflow. Such an overflow can lead to a crash of the kernel
or even worse to a privilege escalation.

Trinity already has rudimentary support for the ioctl syscall,
which we extended with semi-intelligent defaults for parameter
selection. Consequently, while Trinity does not find CVE-2016-6516,
TrinityDECAF indeed successfully detects this double fetch in the
profiling phase. Figure 4 shows a cache trace while calling the
vulnerable function on Ubuntu 16.04 running an affected kernel 4.6.
Although the time between the two accesses is only 10 000 cycles
(approximately 2.5 µs on our i7-6700K test machine), we can clearly
detect the two memory accesses.
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When, in the exploitation phase, the monitoring thread changes
the value to a higher value (cf. Section 5.2) exceeding the actual num-
ber of provided file descriptors, the kernel iterates out-of-bounds,
as the number of file descriptors does not match the actual number
of file descriptors anymore. This out-of-bounds access to the heap
buffer results in a denial-of-service of the kernel and thus a hard
reboot is required. Consequently, the denial-of-service shows that
the double fetch is an exploitable double-fetch bug.

This demonstrates that DECAF is a useful complement to state-
of-the-art fuzzing techniques, allowing to automatically detect bugs
that cannot be found with traditional fuzzing approaches.

Reported Double Fetches. Besides Linux kernel 4.6, we also tested
TrinityDECAF on a recent Linux kernel 4.10. We let TrinityDECAF
investigate all 64-bit syscalls (currently 295) without exceptions
for one hour on an Intel i7-6700K. On average, every syscall was
executed 8058 times. Due to the semi-intelligent parameter selection
of TrinityDECAF, most syscalls are called with valid parameters. In
our test run, 75.12 % of the syscalls executed successfully. Hence,
on average, every syscall was successfully executed 6053 times,
indicating a high code coverage for every syscall.

For every syscall parameter, TrinityDECAF displays a percentage
of the calls where it detected a double fetch. Out of the 295 tested 64-
bit syscalls, TrinityDECAF reported double fetches for 68 syscalls in
Linux kernel 4.10. This is not surprising and in line with state-of-the-
art work [70] which reported 90 double fetches in Linux, but only
33 in syscalls. For each of the reported syscalls, we investigated the
respective implementation. Table 1 (Appendix A) shows a complete
list of reported syscalls and the reason why TrinityDECAF detected
a double fetch. We can group the reported syscalls into 5 major
categories, explaining the detected double fetch.
• Filenames. Most syscalls handling filenames (or paths) are re-
ported by TrinityDECAF. Many of them use getname_flags
internally to copy a filename to a kernel buffer. This function
checks whether the filename is already cached in the kernel, and
copies it to the kernel if this is not the case, resulting in multiple
accesses to the file name. The exploitation phase automatically
filtered out all non-exploitable double fetches in this category.

• Shared input/output parameters. We found 5 syscalls which
are reported by TrinityDECAF although they do not contain a
double fetch. In these syscalls, one of the syscall parameters was
used as input and output. As reads and writes are not distin-
guishable through the cache access pattern (cf. Section 4.1), these
syscalls are filtered out automatically in the exploitation phase.

• Strings of arbitrary length. As with filenames, some syscalls
expect strings from the user that do not have a fixed length.
To safely copy such arbitrary length strings, some syscalls (e.g.,
mount) use an algorithm similar to Algorithm 1. Thus, the de-
tected double fetch is due to the length check and the subsequent
string copy. The exploitation phase automatically filtered out all
non-exploitable double fetches in this category.

• Sanity check. Many syscalls check—either directly, or in a sub-
routine—whether the supplied argument is sane. There are sanity
checks that check whether it is safe to access a user-space pointer
before actually copying data from or to it. Such a check can also
trigger a cache hit if the value was actually accessed. All correct
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Figure 5: Comparing three exploits for CVE-2016-6516. Our
Flush+Reload-based trigger in TrinityDECAF succeeds in
97 %, outperforming the provided proof-of-concept (84 %)
and the state-of-the-art method of value flipping (25 %).

sanity checks were automatically filtered out in the exploita-
tion phase. The exploitation phase correctly identified the ioctl
syscall in the Linux kernel 4.6, but also correctly filtered it out in
Linux kernel 4.10.

• Structure elements. If a syscall has a structure as parameter,
double fetches can be falsely detected if structure members fall
into the same cache line (cf. Section 4.1). If members are either
copied element-wise or neighboring members are simply ac-
cessed, TrinityDECAF will detect a double fetch although two
different variables are accessed. Again, these false positives are
filtered out in the exploitation phase.
Our evaluation showed that TrinityDECAF provides a sensible

complement to existing double-fetch bug detection techniques. The
fact that we found only 1 exploitable double-fetch bug in 68 dou-
ble fetches is not surprising, and in line with previous work, e.g.,
Wang et al. [70] found 3 exploitable double-fetch bugs by manually
inspecting 90 double fetches they found. However, it also shows
that the coverage of DECAF highly depends on the fuzzer used
to instantiate it. Future work may retrofit other fuzzers with DE-
CAF, to extend the spectrum of bugs that the fuzzer covers and
thereby also extend the coverage of DECAF. Furthermore, as Trin-
ity is continuously extended, the coverage of TrinityDECAF grows
automatically with the coverage of Trinity.

7.2 Evaluation of 𝒫2
To evaluate 𝒫2 in detail, we compare three different variants to
exploit the double-fetch bug reported in CVE-2016-6516.

First, the provided exploit, which calls ioctl multiple times, al-
ways changing the affected variable after a slightly increased delay.
Second, we use state-of-the-art value flipping to switch the affected
variable as fast as possible between the valid and an invalid value.
Third, the automated approach 𝒫2, integrated into TrinityDECAF.

Figure 5 shows the success rate of 1000 executions of each of
the three variants. Value flipping has by far the worst success rate,
although in theory, it should have a success rate of approximately
50 %. In half of the cases, the value is flipped before the first access.
Thus, the exploit fails, as the value is smaller at the next access. In
the other cases, the probability to switch the value at the correct
time is again 50 % resulting in an overall success rate of 25 %.

The original exploit is highly optimized for this specific vulnera-
bility. It uses a trial-and-error busy wait with steadily increasing
timeouts, which works surprisingly well, as there is sufficient time
between the two accesses. Depending on the scheduling, the at-
tacker sometimes sleeps too long (4 %) and sometimes too short
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Figure 6: The probability of double-fetch bug exploitation de-
creases with the number of sanity checks as it only succeeds
if the value changes between the last two accesses.

(12 %). Still, the busy wait outperforms the value flipping in this
scenario, increasing the success probability from 25% to 84 %.

Even though our Flush+Reload-based trigger (𝒫2) is generic and
does not require fine-tuning of the sleep intervals, it has the highest
success rate. There is no case where the value was changed too early,
as there are no false positives with Flush+Reload in this scenario.
Furthermore, as the time between the two memory accesses is long
enough, we achieve an almost perfect success rate of 97 %. The
remaining 3 %, where we do not trigger a change of the value, are
caused by unfortunate scheduling of the application.

The success rate of value flipping drops significantly if the two
values have to fulfill specific constraints, e.g., the value has to be
higher on the second access. For example, if an application does not
only fetch the value twice, but multiple times for sanity checking,
the probability of successfully exploiting it using value flipping
decreases exponentially.

Figure 6 shows the probability to exploit a double fetch similar
to CVE-2016-6516, with additional fetches for sanity checks. To
successfully exploit the vulnerability, the value has to be the same
for all sanity checks and must be higher for the last access. Flipping
the value between a valid and an invalid value decreases the chances
by 50 % for every additional sanity check.

Our Flush+Reload-based method (𝒫2) does not suffer signifi-
cantly from additional sanity checks. We can accurately trigger on
the second to last access to change the value. The slightly decreased
probability is only due to missed accesses.

7.3 Evaluation of 𝒫1 on Trusted Execution
Environments

We evaluate𝒫1 on trusted execution environments by successfully
detecting double fetches in Intel SGX and ARM TrustZone.

Intel SGX. Intel SGX allows running code in secure enclaves
without trusting the user or the operating system. A program inside
an enclave is not accessible to the operating system due to hardware
isolation provided by SGX. Weichbrodt et al. [73] showed that
synchronization bugs, such as double fetches, inside SGX enclaves,
can be exploited to hijack the control flow or bypass access control.

As it has been shown recently, enclaves leak information through
the last-level cache, even to unprivileged user space applications,
as they share the last-level cache with regular user space appli-
cations [6, 27, 53, 64]. SGX enclaves provide a communication in-
terface using so-called ecalls and ocalls, similar to the syscall
interface. Enclaves fulfill the properties of Section 4.4, and we can
thus detect double fetches within enclaves, even without access to

the binary. Therefore, we can apply our method to identify double
fetches within SGX enclaves.

To test our Flush+Reload detection mechanism (𝒫1), we imple-
mented a small enclave application. This application consists of
only one ecall, which takes a memory reference as a parameter.
As enclaves can access non-enclave memory, the user can simply al-
locate memory and provide the pointer to the enclave. The enclave
accesses the memory once, idles a few thousand cycles and reac-
cesses the memory. Although the enclave should be isolated from
other applications, the monitoring application can clearly detect
the 2 cache hits. Figure 11 (Appendix D) shows the measurement
of the Flush+Reload thread running outside the enclave on an Intel
i5-6200U. Similarly, Appendix D evaluates 𝒫1 on ARM TrustZone.

7.4 Evaluation of DropIt
To evaluate our open-source library DropIt, as an instantiation of
𝒫3, we investigate two real-world scenarios. In the first scenario,
we demonstrate how DropIt eliminates a compiler-introduced real-
world double-fetch bug in Xen (CVE-2015-8550). In the second sce-
nario, we evaluate the effect of DropIt on Linux syscalls with double
fetches. Our findings show that DropIt successfully eliminates all
double-fetch bugs and can be used as a preventative measure to
protect double fetches in syscalls generically.

Eliminating Compiler-Introduced Double-Fetch Bugs. As discussed
in Section 2.3, compilers can also introduce double-fetch bugs. Es-
pecially switch statements are prone to double-fetch bugs if the
variable is subject to a race condition [5, 52]. This is not an issue
with the compiler, as the compiler is allowed to assume an atomic
value for the switch condition [11]. We are aware of two scenarios
where code generated by gcc contains a double-fetch bug.

If a switch is translated into a jump table with a default case,
gcc generates two accesses to the switch variable. The first access
checks whether the parameter is within the bounds of the jump
table, the second access calculates the actual jump target. Thus, if
the parameter changes between the accesses, a malicious user can
divert the control flow of the program.

If the switch is implemented as multiple conditional jumps, the
compiler is allowed to fetch the variable for every conditional jump.
This leads to cases where the switch executes the default case as
the variable changes while checking the conditions [52].

We evaluated DropIt on the real-world compiler-introduced
double-fetch bug CVE-2015-8550. This vulnerability in Xen allowed
arbitrary code execution due to a compiler-introduced double fetch
within a switch statement. Note that such a switch statement is a
common construct and can occur in any other kernel, e.g., Linux,
or Windows, if a memory buffer is shared between user space and
kernel space. Wrapping the switch statement using DropIt results
in a clean and straightforward fix without relying on the compiler.
With DropIt, any compiler-introduced switch-related double-fetch
bug is successfully eliminated using only 3 lines of additional code.

To compare the overhead of traditional locking and DropIt, we
implemented a minimal working example of a compiler-introduced
double-fetch bug. Our example consists of a switch statement that
has 5 different cases as well as a default case. The condition is a
pointer which is subject to a race condition. The average execution
time of the switch statement without any protection is 7.6 cycles.
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Figure 7: The number of executed file operations per second
of our re-implemented getname_flags using DropIt (green)
does not significantly differ from the version in the vanilla
kernel (red) measured with the IOZone Fileops benchmark.

Using a spinlock to protect the variable increased the average exe-
cution time to 83.7 cycles. DropIt achieved a higher performance
than the traditional spinlock with an average execution time of 68.0
cycles. Thus, DropIt is not only easy to deploy but also achieves a
better performance than traditional locking mechanisms.

Preventative Protection of Linux Syscalls. To show that DropIt pro-
vides an automated and transparent generic solution to eliminate
double-fetch bugs, we also used DropIt in the Linux kernel. As dis-
cussed in Section 7.1, a majority of the double fetches we detected
in the Linux kernel are due to the getname_flags function han-
dling file names. We replaced this function with a straight-forward
implementation protected by DropIt. With this small change, all
double fetches previously reported in 26 syscalls were covered by
DropIt, and thus all potential double-fetch bugs were eliminated.

To compare the performance of DropIt with the vanilla imple-
mentation, we executed 210 million file operations in both cases.
All benchmarks were run on a bare metal kernel to reduce the
impact of system noise. Figure 7 shows the result of the IOzone
filesystem benchmark [55]. On average, the benchmarks show a
0.8 % performance degradation on the tested file operations that
are affected by our kernel change. In some cases, DropIt even has a
better performance than the vanilla implementation. We therefore
conclude that DropIt has no perceptible performance impact. The
variances in the tests are probably due to the underlying hardware,
i.e., the SSDs on which we performed the file operations.

Thus, DropIt provides a reliable and straightforward way to cope
with double-fetch bugs. It is easily integrable into existing C projects
and does not negatively influence the performance compared to
state-of-the-art solutions. Furthermore, it even increases the per-
formance compared to traditional locking mechanisms. DropIt in
SGX performs even better, since many operations interrupting TSX
transactions are forbidden in SGX enclaves anyway.

8 CONCLUSION
In this paper, we proposed novel techniques to efficiently detect,
exploit, and eliminate double-fetch bugs. We presented the first
combination of state-of-the-art cache attacks with kernel-fuzzing
techniques. This allowed us to find double fetches in a fully auto-
mated way. Furthermore, we presented the first fully automated
reliable detection and exploitation of double-fetch bugs. By combin-
ing these two primitives, we built DECAF, a system to automatically
find and exploit double-fetch bugs. DECAF is the first method that

makes manual analysis of double fetches as in previous work su-
perfluous. We show that cache-based triggers, as we use in DECAF,
outperform state-of-the-art exploitation techniques significantly,
leading to an exploitation success rate of up to 97 %.

DECAF constitutes a sensible complement to existing double-
fetch detection techniques. Future work may retrofit more fuzzers
with DECAF, extending the spectrum of bugs covered by fuzzers.
Hence, double-fetch bugs do not require separate detection tools
anymore, but testing for these bugs can now be a part of regu-
lar fuzzing. With continuously growing coverage of fuzzers, the
covered search space for potential double-fetch bugs grows as well.

With DropIt, we leverage a newfound interaction between hard-
ware transactional memory and double fetches, to completely elim-
inate double-fetch bugs. Furthermore, we showed that DropIt can
be used in a fully automated manner to harden Intel SGX enclaves
such that double-fetch bugs cannot be exploited. Finally, our evalu-
ation of DropIt in the Linux kernel showed that it can be applied to
large systems with a negligible performance overhead below 1%.
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A TRINITYDECAF AND DETECTED DOUBLE
FETCHES

In this section, we show implementation details of TrinityDECAF
(our augmented version of Trinity) as well as a complete list of
syscalls reported by TrinityDECAF.

Figure 8 shows the process structure of our augmented version of
Trinity, called TrinityDECAF. The syscall fuzzer Trinity is extended
with one monitoring threads per syscall argument. Each of the
monitoring threads mounts a Flush+Reload attack to detect double
fetches (cf. Section 4.3).

Figure 9 shows the probability that TrinityDECAF detects a
double fetch depending on the time between the two accesses to
the memory (cf. Section 4.2)

Table 1 is a complete table of reported syscalls and the reason
why TrinityDECAF detected a double fetch. The categories are
discussed in detail in Section 7.1.

TrinityDECAF

trinity-main trinity-watchdog

do_syscall 1 do_syscall 2 do_syscall n

monitor 1 ... monitorm

Figure 8: The structure of TrinityDECAF with the Flush+
Reload monitoring threads for the syscall parameters.
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Figure 9: The probability of detecting a double fetch depend-
ing on the time between the accesses.

Table 1: Double fetches found by TrinityDECAF.

Category Syscall

Filenames open, newstat, truncate, chdir, rename(at),
mkdir(at), rmdir, creat, unlink, link, symlink(at),
readlink(at), chmod, (l)chown, utime, mknod,
statfs, chroot, quotactl, *xattr, fchmodat

Shared input/output sendfile, adjtimex, io_setup, recvmmsg, send-
mmsg

Strings mount, memfd_create

Sanity check sched_setparam, ioctl, sched_setaffinity,
io_cancel, sched_setscheduler, futimesat, sysctl,
settimeofday, gettimeofday

Structure elements recvmsg, msgsnd, sigaltstack, utime

B SAFE STRING COPY
In this section, we show the pseudo-code of a standard algorithm
used to safely copy an arbitrary-length string. Algorithm 1 first
retrieves the length of the string, to allocate a buffer and copy
the string up to this length. Then, it checks whether the string is
terminated, and if not, retries again as the buffer was apparently
changed before copying it.

A similar algorithm is used in the Linux kernel whenever user
data of unknown length has to be copied to the kernel.

Algorithm 1: Safe string copy for arbitrary string lengths with
software-based retry logic.
input : string
copy:
len← strlen(string);
buffer← allocate(len + 1);
strncpy(buffer, string, len);
if not isNullTerminated(buffer) then

free(buffer);
goto copy; // or abort with error if too many retries

end

C CVE-2016-6516
CVE-2016-6516 is a double-fetch bug in an ioctl call used to share
physical sections of two files if the content is identical. This dedu-
plicates the identical section to save physical storage. On a write
access, the identical section has to be copied to ensure that the
changes are only visible within the changed file.

The user provides a file descriptor for the source file as well as a
starting offset and length within the source file. Additionally, the
syscall takes an arbitrary number of destination file descriptors
including offsets and lengths. The kernel maps the source section
into the destination file if the given destination sections are identical
to the source section.

The function supports an arbitrary number of destination files.
Thus, the user has to supply the number of provided destination
files, so that the kernel can determine the required amount of mem-
ory to allocate. Listing 1 shows the corresponding code from the
Linux kernel. If the number changes between the allocation and the
actual access to the data structure, the kernel accesses the buffer
out-of-bounds, leading to a heap-buffer overflow.

1 // first access of dest_count
2 if (get_user(count, &argp->dest_count)) { [...] }
3 // allocation based on dest_count
4 size = offsetof(struct file_dedupe_range __user ,
5 info[count]);
6 same = memdup_user(argp , size);
7 if (IS_ERR(same)) { [...] }
8 ret = vfs_dedupe_file_range(file , same);
9 // function accesses same->dest_count, not count

Listing 1: The vulnerable ioctl_file_ dedupe_range function
that was present in the Linux kernel from version 4.5 to 4.7.
The dest_count member is accessed twice and can thus be
changed between the accesses by a malicious user, leading
to a kernel heap-buffer overflow.

13



D ARM TRUSTZONE
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Figure 10:Adouble fetch of a trustlet running inside theARM
TrustZone of a Raspberry Pi 3. The cache hits can be clearly
seen at around 0.96 ·106 and 3.01 ·106 cycles as the access time
drops from >160 cycles to <120 cycles.
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Figure 11: Monitoring a double fetch inside an SGX enclave.
The cache hits can be clearly seen at around 0.75 · 106 and
1.21 · 106 cycles as the access time drops from >150 cycles to
<140 cycles.

ARM TrustZone is a trusted execution environment for the ARM
platform. The processor can either run in the normal world or the
trusted world. As with Intel SGX, the worlds are isolated from
each other using hardware mechanisms. Trustlets—applications
running inside the secure world—provide a well-defined interface
to normal world applications. This interface is accessed through a
secure monitor call, similar to a syscall.

To use the ARM TrustZone, the normal-world operating system
requires TrustZone support. Furthermore, a secure-world operating
system has to run inside the TrustZone. For the evaluation, we used
the TrustZone of a Raspberry Pi 3. We use the open-source trusted
execution environment OP-TEE [43] as a secure-world operating
system. The normal world runs a TrustZone-enabled Linux kernel.

As with Intel SGX (cf. Section 7.3), we again implement a trustlet
providing a simple interface for receiving a pointer to a memory
location. However, there are some subtle differences compared to
the SGX enclave. First, trustlets are not allowed to simply access

1 dropit_t config = dropit_init(1000);
2 dropit_start(config);
3 len = strlen(str); // First access
4 if (len < sizeof(buffer)) {
5 strcpy(buffer , str); // 2nd access ,
6 // length of 'str' could have changed
7 } else {
8 printf("Too long!\n");
9 }
10 dropit_end(config, { printf("Fail!"); exit(-1);});

Listing 2: Using DropIt to protect a simple string copy
containing a double-fetch bug from being exploited. Only
the highlighted lines (1, 2, and 10) have to be added to the
existing code to eliminate the double-fetch bug.

normal-worldmemory. To pass data ormessages from normal world
to secure world and vice versa, world shared memory is used, a
region of non-secure memory, mapped both in the normal as well
as in the secure world. With the world shared memory, we fulfill
all criteria of Section 4.4.

On ARM, there are generally no unprivileged instructions to
flush the cache or get a high-resolution timestamp [2]. However,
they can be used from the operating system. Thus, in contrast to
the double-fetch detection in syscalls or Intel SGX, we require root
privileges to detect double fetches inside the TrustZone. This is
not a real limitation, as we use the detection only for testing, and
discovering bugs. An attacker using Flush+Reload as a trigger to
exploit a double-fetch bug can rely on different time sources and
eviction strategies as proposed by Lipp et al. [44].

Figure 10 shows a recorded cache trace of the trustlet. Similarly
to Figure 11, a trace from Intel SGX, the cache hits are clearly distin-
guishable from the cache misses. Thus, we can detect double-fetch
bugs in trustlets, even without having access to the corresponding
binaries.

E EXAMPLE OF DROPIT
In this section, we show a small example of how to use DropIt.
Listing 2 shows an example how to protect the insecure strcpy
function using DropIt. A programmer only has to add 3 lines of
code (highlighted in the listing) to protect arbitrary code from
double fetch exploitation. DropIt is clearly simpler than current
state-of-the-art software-based retry logic (cf. Algorithm 1).

DropIt is implemented in standard C without any dependencies
on other libraries, and can thus be used in user space, kernel space,
as well as in trusted execution environments (e.g., Intel SGX). If
Intel TSX is not available, DropIt has the possibility to execute a
fall-back function instead.

14


